Introduction

Patterns of spatial distribution relative to conspecifics can affect the reproductive success of individual plants in a population if pollinators respond to floral display. Floral display can be perceived at one or more spatial scales by pollinators: the individual flowers, the number of open flowers on an inflorescence, the number of inflorescences on a plant, the number of plants in a definable cluster or in a definable population. The relationship between reproductive success and floral display has been studied in relatively few orchid species and no consistent pattern has yet emerged. For example, fruit production was greatest at intermediate inflorescence densities in Calopogon tuberosus (Firmage and Cole 1988), greatest at the highest inflorescence densities in Anacamptis (formerly Orchis) morio (Jersákova et al. 2002), and no relationship was detected between inflorescence density and fruit production in Brassavola nodosa (Schemske 1980), Leporella fimбриata (Peakall 1989), Orchis purpurea (Jacquemyn et al. 2002) or Neottia (formerly Listera) cordata (Meléndez-Ackerman & Ackerman 2001).

Data on the relationship between number of flowers in an inflorescence and fruit set in orchids, while scarce, are also inconsistent. In Lepanthes wendlandii (Calvo 1990), Calopogon tuberosus (Firmage & Cole 1988), Ionopsis utricularioides (Montalvo &
Ackerman 1987), *Orchis purpurea* (Jacquemyn et al. 2002) and *Aspasia principissa* (Zimmerman & Aide 1989), inflorescences bearing more flowers had a higher probability of setting fruit. In contrast, there was no effect of flower number per inflorescence on fruit set in *Psychilis krugii* (Ackerman 1989), *Epidendrum exasperatum* (Calvo 1990) or *Neotinea* (formerly *Orchis*) *ustulata* (Tali 1996). Inflorescence size may also affect male and female reproductive success. In *Epipactis helleborine*, Piper and Waite (1988) showed that the percentage of pollinaria exported and imported increased in a parallel fashion as inflorescence size increased, but the intercepts of the relationships were significantly different. Pollinaria export was significantly greater than pollinaria import at a given inflorescence size.

In this study we investigated two hypotheses related to reproductive success in the deceit-pollinated **Purple Enamel-orchid, Elythranthera brunonis** (Endl.) A.S. George, a terrestrial species endemic to Western Australia. The first hypothesis was that the reproductive success as measured from pollinaria deposition and removal of individual plants is independent of the local density of conspecific plants. As in neighborhood models of competition between plants (Pacala & Silander 1985, Jacquemyn et al. 2002), if resources – in this case pollinators – are limited, we would expect reproductive success to be lower in a higher density neighborhood if plants are deceit-pollinated and the animal vectors have the capacity to learn rapidly from their mistakes. The null hypothesis would be that more flowering plants per unit area could attract more pollinators, resulting in greater reproductive success per individual in denser populations. The second hypothesis was that both pollen removal (an index of male function) and pollen deposition (an index of female function) would be positively related to inflorescence size. In addition to presenting quantitative tests of these two hypotheses, we review the controversial taxonomic, phylogenetic and distributional contexts of our chosen study species, *Elythranthera brunonis*, which have not previously been collated in the literature.

Morphology and pollination biology

PHYLOGENETIC CONTEXT OF POLLINATION.

A molecular phylogenetic analysis combining the plastid regions matK and trnL–F (Kores et al. 2001, Hopper & Brown 2004) nested *Elythranthera* well within the “core Caladeniinae”, one of three major clades that together constitute the re-circumscribed tribe Diurideae s.s. Recent morphological taxonomic studies have progressively disaggregated the exceptionally heterogeneous genus *Caladenia* s.l., so that the “core Caladeniinae” now encompasses ten monophyletic genera, most of them containing few species (cf. Jones 1988, Hoffman & Brown 1998, Hopper & Brown 2001b). Four genera successively branch from the base of the clade Caladeniinae. *Adenochilus* (2 species, Eastern Australian/New Zealand) is succeeded by *Eriochilus* (8 species, mostly Western Australian), then *Leptoceras* (1 species, Western and Eastern Australian), then *Precoxanthus* (1 species, Western Australian). A dichotomy then separates *Caladenia* s.s. (an estimated 243 mainly Australian species and 19 named hybrids in 6 subgenera) from a five-genus clade consisting of *Cyanicula* (10 species, both Western and Eastern Australian), *Pheladenia* (1 species, both Western and Eastern Australian), *Ericksonella* (1 species, Western Australian), and then the generic pairing of *Glossodia* (2 species, Eastern Australian) and *Elythranthera* (2 species, Western Australian) (Hopper and Brown 2004).

Members of the “core Caladeniinae” have a recognizable morphological “gestalt”. The small underground tuber generates a single, fleshy leaf at or near the base of the slender stem, which in most cases is strongly hirsute and bears few flowers. The flowers are large relative to most other terrestrial orchids. In many species, the three sepals and two lateral petals are large, rhombic in outline, spreading and brightly colored, suggesting that they are primary visual attractants for pollinating insects. Deviations from this plesiomorphic condition occur in (a) the near-basal *Eriochilus* and *Leptoceras*, where the dorsal sepal and lateral petals are substantially reduced relative to the lateral sepals, and (b) the highly derived spider-orchids of *Caladenia* subgenus *Calonema*, subgenus *Drakonorchis* and subgenus *Phlebochilus*, which have strongly elongate sepals and lateral petals (e.g. Hopper & Brown 2001b). In all ten genera, the spurless labellum is well differentiated from the other five perianth segments by being more three-dimensional and much smaller, often possessing a fimbriate margin and/or adaxial calli. Together with the unusually elongate gynostemium, the labellum forms a visual and tactile focus for pollinators. The large gynostemium bears the relatively small, paired acrotenic pollinaria that are characteristic of the diurids (e.g. Dressler 1993, Pridgeon et al. 2001).
Focusing on the *Cyanicula–Glossodia–Elythranthera* clade, largely unpublished molecular phylogenetic data for the nrDNA internal transcribed spacer region demonstrate substantial divergence between the three genera (P. J. Kores, 2001, unpublished data; see also the preliminary ITS tree of Kores et al. in Hopper & Brown 2001a), though the occurrence of rare natural hybrids between *Cyanicula* and *Elythranthera* (Hoffman & Brown 1998) suggests that these genera are not wholly reproductively isolated.

The limited and often anecdotal information currently available (cf. Jones 2001, Dañi & Bernhardt 1990, A. P. Brown, 2006, unpublished data) suggests that the *Cyanicula, Elythranthera, Glossodia, Praeoxanthus* and the less derived subgenera of *Caladenia s.s.* are pollinated by unrewarded bees or, in the case of a few *Caladenia* and *Cyanicula* species, by beetles (Kores et al. 2001, A.P. Brown, 2006, unpublished data). Hoverflies and flower wasps are also known to be occasional pollinators, but these insects are thought to be sporadic visitors that rarely transfer pollen. The main exceptions lie in the species-rich genus *Caladenia*, where many spider-orchids of the more derived subgenera *Calonema*, *Drakonorchis* and *Phlebochilus* experience pheromonally-induced pseudocopulation by thynnid wasps (Stoutamire 1974, 1975, 1981, 1983), although some species also attract bees, flies and/or beetles (Bower 2001a; A.P. Brown, 2006, unpublished data). *Glossodia* species are pollinated by small bees of the genus *Halictus* (Jones 1988), as are both species of *Elythranthera*, which contain yellow-tipped calli that resemble anthers and hence may lure bees in search of pollen (A.P. Brown, 2006, unpublished data).

Thus, the core Caladeniinae encompass a wide range of floral morphologies that reflect an equal diversity of insect pollinators. Within this context, *Elythranthera* epitomises those genera that are highly attractive to bees but appear to offer them no tangible reward.

MORPHOLOGY AND AUTECOLOGY OF ELYTHRANTHERA.

Elythranthera was represented only by *E. emarginata* in the plastid phylogeny of Kores et al. (2001), but the second species in the genus, *E. brunonis*, has also been included in the forthcoming ITS phylogeny. This reveals a disparity of only four bases between the two species (P. J. Kores unpublished data, 2001), all perceived as autopomorphies of *E. brunonis*, suggesting that one species diverged from the other relatively recently.

Both species are distributed throughout south-west Western Australia and have broadly similar floral morphologies. The labellum bears two prominent calli and is smaller than the over-arching gynostemium, which superficially resembles an additional perianth segment due to its exceptionally well-developed lateral wings (see Pridgeon et al. 2001, fig. 28.1, pl. 7). The striking sepals are fleshy exceptionally glossy and somewhat recurved toward the apices.

Of the two species, *E. brunonis* is the more common, blooms earlier in the spring (between August and early November), is typically taller and bears smaller, purple rather than pink, flowers and more strongly folded labella (Jones 1988, Hoffman & Brown 1984, 1992, 1998, Brown 1999). Both species experience enhanced flowering following wildfire the previous summer (Hoffman & Brown 1992, 1998, Brown 1999; Jones 2001). *Elythranthera brunonis* occurs most commonly on the lateritic soils of the jarrah (Eucalyptus marginata) forest between Perth and Albany, though it is also found in inland woodlands and shrublands, seasonally wet swamplands and in areas of coastal heath over a wide area between Kalbarri on the west coast and Israelite Bay on the south coast. Our study sites encompassed a considerable portion of this geographical and ecological spectrum.

In most communities where it is found, *Elythranthera brunonis* occurs as scattered individuals (more rarely in small groups) that are typically spaced from 20 cm to several metres apart. This suggests that plants do not commonly multiply by producing more than one new tuber each year, and hence that reproduction is primarily by seed. It also renders *E. brunonis* an especially interesting model for the study of the influence of plant density on reproductive success.

Materials and methods

DATA COLLECTION AND ANALYSIS.

Data on reproductive success were collected over three consecutive days in September and October 2001 from six populations of *Elythranthera brunonis* in south-western Australia. Each site was visited once during a field trip that immediately followed the 1st World Orchid Conservation Congress in Perth (Dixon et al. 2003). Each of the authors targeted plants by randomly walking through each study site until a plant with at least one open flower was encountered. Once target plants were located, we evaluated the condition of each flower and counted the number fully open, partially open and in the bud stage. For fully open flowers, we determined whether at least
one of the two pollinaria had been removed from the
gynostemium and whether or not pollen had been
deposited on the stigma. We also counted the number
of other individuals of E. brunonis flowering within a
radius of 2.5 m of the target plant. Site locations and
details of plant communities at each site are given in
Table 1.

The effect on the reproductive success of target
plants of being isolated (defined as being the only
flowering plant of Elythranthera brunonis within 2.5
m or more clumped (defined as having at least one
other flowering plant of E. brunonis within 2.5 m was
tested by using a 2*2 contingency test by randomiza-
tion. Because some expected frequencies were below
5, the computer program Fish6 Exact Test was used
for analyses (Bill Engels, University of Wisconsin,
1992) rather than the Chi square test. To test whether
there was a significant relationship between reproduc-
tive success and number of plants in a clump, a linear
regression analysis was performed with all data com-
bined, including isolated plants. Reproductive suc-
cess is measured as the number of flowers with polli-
naria removed from the bursicles and/or deposited on
stigma divided by the total number of fully open
flowers.

Results

Pollen removal and deposition.

Across all study sites, and irrespective of the num-
ber of neighbors around target plants, 10.1% of the
flowers had clear evidence of pollinaria deposition
and 15.9% of the flowers had clear evidence of at
least one pollinaria removed.

Effect of inflorescence size.

Most plants had only one open flower (84.3%; 15.2% and 0.5% two and three flowered, respective-
ly). The number of pollinaria removed and pollinaria
deposited on stigmas did not differ significantly
between plants that had two or more open flowers on
the inflorescence, as compared with plants possessing
only one open flower (Fisher’s Exact test, pollinaria
removal p = 0.61; pollinaria deposition p = 0.14:
Table 3).

Plant isolation and reproductive success.

The probability of pollinaria being deposited and
the probability of pollinaria being removed were not
significantly affected by plants being isolated or in
clumps when data from each of the six study sites
were analyzed separately. However, when data from
all sites were combined, the probability of pollinaria
being deposited was significantly lower for isolated
plants than for plants in clumps (Table 2).

Density-dependent reproductive success at the
flower level.

A significant positive correlation ($r^2 = 22.5$) was
observed between the percentage of flowers with pol-
inaria removal and the number of flowers within 2.5
m of the target plant (Kendall Rank Correlation, Tau
corrected for ties 0.225, p = 0.0001, n = 136). A less
strong, but still significant, positive correlation
(18.5%) was observed for the percentage of flowers
with pollinaria deposited and for number of flowers
within 2.5 m of the target plant (Kendall Rank
Correlation, Tau corrected for ties 0.185, p = 0.001, n
= 136).

These results could be caused by the high propor-
tion of all the recorded plants that were isolated.
Thus, the analyses were repeated without the isolated
individuals. The pattern remained the same for the
effect of number of plants in the clump on pollinaria
removal (Kendall Rank Correlation, Tau corrected for
ties 0.268, p = 0.006, n = 50). However, the relation-
ship between number of neighbors in the clump and
the percentage of flowers on which pollinaria had
been deposited became insignificant (Kendall Rank
Correlation, Tau corrected for ties 0.138, p = 0.16, n
= 50).

Discussion

Is Elythranthera truly deceptive?

Fruit production has generally been shown to be
low in deceptive orchid species but, based on the lit-
erature (Tremblay et al. 2005), one cannot predict
whether there will be a positive (e.g. this study;
Jacquemyn et al. 2002a), negative (e.g. Fritz &
Nilsson 1995) or neutral (e.g. Fritz & Nilsson 1995,
between inflorescence density and reproductive suc-
cess. The range of responses observed thus far might
be due to biological (e.g. pollinator availability,
effects of herbivory, reproduction in previous years)
and/or environmental controls (e.g. temporal varia-
tion in environmental quality and habitat disturb-
ance). However, there is some evidence that repro-
ductive success is temporally variable and that obser-
vations need to be made over long periods of time in
order to fully understand the complex relationships
between pollinators, the environment and the orchids.
Habitat and associated orchids

<table>
<thead>
<tr>
<th>Date</th>
<th>Site no.</th>
<th>Location</th>
<th>Latitude and Longitude</th>
<th>Habitat and associated orchids</th>
</tr>
</thead>
<tbody>
<tr>
<td>30/09/01</td>
<td>2</td>
<td>Caves Road south-east of Redgate</td>
<td>34° 04’ 03” S 115° 02’ 10” E</td>
<td>Woodland of Banksia attenuata, Eucalyptus marginata and Agonis flexuosa over Lysinema ciliatum, Adenanthis obovatus, Hibbertia hypericoides and native sedges (Lepidosperma sp.). Deep grey sandy soil. Associated orchids included Drakaea glyptodon, Paracaleana nigrita, Caladenia flava and Pterostylis turfosa.</td>
</tr>
<tr>
<td>01/10/01</td>
<td>3</td>
<td>Lake Muir on the Muir Highway</td>
<td>34° 27’ 03” S 116° 39’ 01” E</td>
<td>Woodland of Eucalyptus patens, Banksia littoralis over Melaleuca lanceolata, Hibbertia cuneata and native sedges. Grey sandy nes above winter-wet flats. Associated orchids included Caladenia flava, Lyperanthus serratus, Microtis media and Leptoceras menziesii.</td>
</tr>
<tr>
<td>02/10/01</td>
<td>5</td>
<td>Stirling Range National Park</td>
<td>34° 28’ 20” S 118° 04’ 05” E</td>
<td>Winter damp low shrubland of Burtonia scabra, Andersonia simplex, Isopogon teretifolia, Lambertia inermis, Boronia inornata and Melaleuca suberosa. Grey clay soil. Associated orchids included Thelymitra villosa, T. crinita, T. flexuosa and Caladenia heberleana.</td>
</tr>
</tbody>
</table>
Table 2 The recorded number of flowers on isolated plants and plants in clumps, with and without evidence of pollinaria removal [PR] and pollinaria deposition [PD] on the stigma. P values indicate the results of Fisher’s Exact tests to determine the probability that the distribution of the data departs from random expectation. N/A = data insufficient for valid statistical analysis.

<table>
<thead>
<tr>
<th>Site</th>
<th>Isolated plants</th>
<th>Plants in clumps</th>
<th>No. of plants without pollinaria removed</th>
<th>No. of plants with pollinaria removed</th>
<th>No. of plants without pollinaria deposited</th>
<th>No. of plants with pollinaria deposited</th>
<th>PR %</th>
<th>PD %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1</td>
<td></td>
<td></td>
<td>12</td>
<td>12</td>
<td>0</td>
<td>11</td>
<td>1</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td>27</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Isolated plants</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.129</td>
</tr>
<tr>
<td></td>
<td>Plants in clumps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Site 2</td>
<td>Isolated plants</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>33.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Plants in clumps</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.361</td>
<td>N/A</td>
</tr>
<tr>
<td>Site 3</td>
<td>Isolated plants</td>
<td>23</td>
<td>20</td>
<td>3</td>
<td>22</td>
<td>1</td>
<td>13.0</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>Plants in clumps</td>
<td>24</td>
<td>21</td>
<td>3</td>
<td>23</td>
<td>1</td>
<td>12.5</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.908</td>
<td>0.975</td>
</tr>
<tr>
<td>Site 4</td>
<td>Isolated plants</td>
<td>14</td>
<td>9</td>
<td>5</td>
<td>14</td>
<td>0</td>
<td>3.6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Plants in clumps</td>
<td>146</td>
<td>12</td>
<td>34</td>
<td>121</td>
<td>5</td>
<td>23.3</td>
<td>17.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.301</td>
<td>0.295</td>
</tr>
<tr>
<td>Site 5</td>
<td>Isolated plants</td>
<td>31</td>
<td>31</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Plants in clumps</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Site 6</td>
<td>Isolated plants</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Plants in clumps</td>
<td>11</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>27.3</td>
<td>36.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>All data combined</td>
<td>Isolated plants</td>
<td>83</td>
<td>74</td>
<td>9</td>
<td>81</td>
<td>2</td>
<td>10.8</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>Plants in clumps</td>
<td>218</td>
<td>178</td>
<td>40</td>
<td>188</td>
<td>30</td>
<td>8.3</td>
<td>13.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.115</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Table 3 The recorded number of plants with one or more than one flowers open, with and without evidence of pollinaria removal [PR] and pollinaria deposition [PD] on the stigma. P values indicate the results of Fisher’s Exact tests to determine the probability that the distribution of the data departs from random expectation. N/A = data insufficient for valid statistical analysis.

<table>
<thead>
<tr>
<th>Site 1</th>
<th>Single Flowe</th>
<th>Multi-Flowe</th>
<th>No. of plants without pollinaria removed</th>
<th>No. of plants with pollinaria removed</th>
<th>No. of plants without pollinaria deposited</th>
<th>No. of plants with pollinaria deposited</th>
<th>PR %</th>
<th>PD %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>253</td>
<td>48</td>
<td>213</td>
<td>40</td>
<td>229</td>
<td>24</td>
<td>15.8</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>39</td>
<td>9</td>
<td>40</td>
<td>3</td>
<td>18.8</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.613</td>
<td>0.139</td>
</tr>
</tbody>
</table>
During a multi-year study, Primack and Stacey (1988) consistently found very low levels of reproductive success in *Cypripedium acaule*, a deceptive slipper orchid. Following major disturbances such as fire and defoliation of trees during a herbivorous insect outbreak, reproductive success was very high but only for a short period of time, and was positively correlated with a large increase in the number of flowering individuals following disturbance. This observation suggests that unpredictable and infrequent events (notably fire in the context of *Elythranthera brunonis*) may play a major role in determining long-term reproductive success in such species.

Like *Cypripedium acaule*, *Elythranthera brunonis* flowers in much larger numbers following summer wildfires (Hoffman & Brown 1992, 1998), clearly demonstrating that long-term monitoring and both long- and short-term manipulation studies such, as those performed on *Cypripedium acaule* (Gill 1996, Primack & Stacy 1998), *Neotinea ustulata* (Tali 2004), *Orchis simia* (Willems 2002) and *Dactylorhiza fuchsii* (Jersaková & Kindlmann 2002b), are needed to more fully understand the patterns and causes of temporal variation in orchid flowering and reproductive success. Reproductive success is positively related to inflorescence size in some deceptive orchids (Jacquemyn et al. 2002a), although Calvo (1990) has suggested that it may not be an important factor in many species because of the low levels of pollination inherent in most orchids relative to comparable members of other plant families. Inflorescence size is probably of little consequence for reproductive success in *Elythranthera brunonis* because of the low variation in number of flowers per inflorescence. However, a study of the potential for selection on inflorescence size in *Stegostyla* (previously *Caladenia*) *gracilis* suggest that, if inflorescence size is genetically inherited and not environmentally determined, the potential for selection is present even if little variation in inflorescence size is observed in the field (Tremblay 2005). Higher reproductive success in clumps and larger floral densities suggests that, if the flowers of *E. brunonis* are indeed deceptive, the pollinators are slow to learn from their rewardless visits, or that larger groups of flowers are more attractive to potential pollinators. Because individual plants produce few flowers, the reproductive success of this species is mainly influenced by differences in inflorescence density. It would be interesting to know whether *E. brunonis* is indeed rewardless, and whether physical or chemical pollinator cues are present but have not yet been confidently identified.

REPRODUCTIVE SUCCESS AND POLLINATOR LIMITATION.

As many studies have shown that orchids are pollinator limited (for an extensive review see Tremblay et al. 2005) we predicted that pollination would be lower in isolated plants. We found that fewer pollinaria were removed from flowers of isolated plants than from plants with close neighbors (0.11 vs 0.18), and that the effect of flower isolation on pollinaria deposition was less marked but still significant (0.02 vs 0.14). These results indicate differences in the effect of local inflorescence density on male and female functional success.

The ratio of pollinaria removed versus pollinaria deposited was approximately 1.5:1 in *E. brunonis*. This ratio is high relative to that reported for several other orchids (Tremblay et al. 2005). However, a similar ratio was observed in the Puerto Rican species *Ionopsis utricularioides* = 1.96:1 (Montalvo & Ackerman 1987), *Comparettia falcata* = 1.35:1.
(Salguero-Faria & Ackerman 1999), Satyrium bicone = 0.30:1 (Ellis & Johnson 1999) and Aerangis verdickii = 2:1-3:1 (Light et al. 2004). All of these species offer nectar rewards which are much higher deposition to removal ratio as compared to Central American species Stelis argentata and the Brazilian species Bulbophyllum ipanemense, where the ratios are, respectively, 26.7:1 (Christensen 1992) and 24.2:1 (Borba & Semir 1998). Once again, the observed visitation rate of 10–15% suggests that E. brunonis is not a deceptive flower or at least offers a higher attracting ability then most deceptive species. Our results suggest that there is a high efficiency, averaged across all sites, of pollen to the stigmatic surfaces. Assuming that removal and deposition of pollinaria were recorded with equal accuracy, our data suggest that approximately 64% of all pollinaria removed were eventually deposited on conspecific stigmas (i.e. there would have been a ratio of three pollinaria removed for every two deposited on a stigmatic surface). At present we are ignorant of the identity of the pollinator, (other than it is a bee in the genus Halictus), and of the mechanism by which the insects are apparently attracted. The ratio of pollinaria deposited to pollinaria removed suggests that the pollination mechanism is effective on those occasions when visitation occurs. Knowledge of the species pollinating E. brunonis might help to explain the high efficiency of pollination.

Since none of the populations behaved significantly differently from each other there is no evidence to suggest that the effect of density on reproductive success is population/site dependent. Moreover, wherever this orchid is present it appears to be a common component of the flora regardless of the extent of its bushland habitat (i.e. small fragmented areas of remnant habitat or of larger areas of intact habitat: A.P. Brown, 2006, unpublished data). The observed variation in population density at the sampled sites may not necessarily represent the range of densities in this species, since fire can affect flowering densities and the fire histories of particular sampled sites are unknown.

If the pattern of reproductive success observed in Elythranthera brunonis during this short survey is consistent over longer periods then E. brunonis is partially affected by the spatial organization of individuals. Clumps of individuals have higher reproductive success through both male and female measures. Local pollination dynamics may be affected by other factors that mask the pollinator behavior in relation to the flowering densities. Furthermore, the high efficiency of pollinations suggests that E. brunonis is not a deceptive species and the autecology’s of this species should to be investigated in greater depth.

ACKNOWLEDGEMENTS

We are indebted to Paul Kores and his colleagues for making available information from their unpublished ITS phylogeny, and for critical comments on pollination syndromes, in the Caladeniinae s.s.

LITERATURE CITED

Ellis, A.G. & S.D. Johnson. 1999. Do pollinators deter-

Richard Bateman is an evolutionary biologist and palaeobiologist who has studied orchids for most of his life. His particular interests are morphological and molecular phylogeny reconstruction, species delimitation, and saltational explanations of major steps in evolution. He is currently a Research Associate at the Royal Botanic Gardens Kew, Head of Policy at the Biosciences Federation, Visiting Professor at the University of Reading, President of the Systematics Association and of the UK Hardy Orchid Society, and Vice President of the Linnean Society.

Andrew Brown is a conservation biologist and taxonomist who has studied orchids for much of his life. Andrew has authored numerous papers and publications on Western Australian orchids and in particular has been involved in naming over 150 new Western Australian taxa, has co-authored Orchids of South-west Australia and is currently preparing a new book covering all the Western Australian orchid species. Apart from the Orchidaceae Andrew is interested in the Mypoporaceae and has prepared text for a soon to be published field guide on Eremophila. He is currently the State Threatened Flora Coordinator based in the Western Australian Department of Environment and Conservation’s Species and Communities Branch and, as such, coordinates research, recovery and other work on threatened Western Australian plants. Andrew is a life member of the Western Australian Native Orchid Study and Conservation Group, and a member of the Australian Orchid Foundation and Australasian Orchid Specialist

Marc Hachadourian is the Curator of Glasshouse Collections for the New York Botanical Garden. He is a graduate of Cornell University and holds a degree in Plant Science. He actively participates in conservation studies and contributes his expertise in ex-situ conservation of all types of plants. He has studied and observed orchids in the wild in South America, Australia, Europe, South Africa and Australia. With active interests in taxonomy and conservation, Mr. Hachadourian has dedicated himself to increasing public awareness about the importance of global plant conservation and the appreciation of plant biodiversity.

Michael J. Hutchings is a population ecologist who has studied orchids for thirty years. He also researches into the ecology of clonal plant species and the effects of environmental heterogeneity on individual plants, plant competition, and the performance of populations and communities of plants. He is Professor of Ecology at University of Sussex, UK, and Executive Editor of Journal of Ecology.
Shelagh Kell was Executive Officer of the IUCN/SSC Orchid Specialist Group from 1998–2003 and in 2001 initiated and co-founded Orchid Conservation International. She is currently Author, Supervisor and Associate Examiner for the University of London External Programme (UK), Honorary Research Associate at the University of Birmingham (UK), Consultant Editor for the International Plant Genetic Resources Institute (Italy) and Programme Manager for the IUCN/SSC Crop Wild Relative Specialist Group.

Harold Koopowitz is professor emeritus in Biology at the University of California at Irvine. His research interests range from conservation biology of orchids to the reproductive biology of tropical orchids. In addition, he specializes in the taxonomy of the genus *Paphiopedilum*. He does field research on causes of rarity and commoness in the amaryllid genus *Narcissus*.

Carlos Lehnebach is currently finishing his PhD research on the Radiation and phylogenetic affinities of New Zealand Alpine Ranunculus at Massey University, New Zealand. He has previously studied the pollination ecology of New Zealand’s epiphytic and terrestrial orchids and the Chilean orchid flora (taxonomy and conservation issues). His research interests include adaptive radiation and speciation processes, phylogenetic affinities between NZ and South American plants and orchid pollination ecology and conservation.

Raymond L. Tremblay is a senior professor at the University of Puerto Rico at the Humacao campus and is a member of the graduate faculty at the Rio Piedras campus. He is presently chair of the In situ conservation Committee of the OSG. His interests are varied including evolutionary processes and conservation biology of orchids. Much of his present work involves population viability analysis.

Dennis F. Whigham is a Senior Scientist and Deputy Director at the Smithsonian Environmental Research Center in Edgewater, Maryland and Professor of Landscape Ecology at Utrecht University in The Netherlands. His research involves the broad topic of how plants interact with their environment and how those interactions affect ecological processes. He is a member of the Orchid Specialist Group IUCN. His research currently emphasizes populations dynamics and orchid-fungal interactions.