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Abstract

We consider a three-dimensional deterministic control model of
the process of aerobic wastewater biotreatment. For this model, we
formulate and solve two optimal control problems, each of which
has a corresponding minimizing functional. For the first problem,
the functional is a weighted sum of the pollutant concentration at
the end of a fixed time interval and the cumulative biomass con-
centration over the interval. For the second problem, the functional
is a weighted sum of the pollutant concentration at the end of the
time interval and the cumulative oxygen and biomass concentra-
tions over the interval. In order to solve these problems, we apply
the Pontryagin Maximum Principle. The switching functions are
analytically investigated and uniquely determine the type of the op-
timal controls for the considered problems. Their properties allow
the simplification of the optimal control problems to that of finite-
dimensional constrained minimization. Numerical solutions of the
optimal control problems are also provided.

Keywords: wastewater treatment, nonlinear model, optimal control.

Resumen

Consideramos un modelo de control determińıstico tridimensional
del proceso de biotratamiento aeróbico de aguas residuales. Para este
modelo, formulamos y resolvemos dos problemas de control óptimo,
cada uno de los cuales tiene un funcional a minimizar. Para el
primer problema, el funcional es una suma ponderada de la con-
centración del contaminante al final de un intervalo de tiempo fijo y
la concentración acumulada de la biomasa sobre el intervalo. Para
el segundo problema, el funcional es una suma ponderada de la
concentración del contaminante al final del intervalo de tiempo y
las concentraciones acumuladas de ox́ıgeno y biomasa sobre el in-
tervalo. Para resolver estos problemas, aplicamos el Principio del
Máximo de Pontryagin. Las funciones de conmutación son inves-
tigadas anaĺıticamente y determinan uńıvocamente el tipo de con-
troles óptimos para los problemas considerados. Sus propiedades
permiten la simplificación de los problemas de control óptimo para
una minimización finitodimensional con restricciones. Se brindan las
soluciones numéricas de los problemas de control óptimo.

Palabras clave: tratamiento de aguas residuales, modelo no lineal, con-

trol óptimo.

Mathematics Subject Classification: 49J15, 49N90, 93C10, 93C95.
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1 Introduction

The objectives of the biological treatment of wastewater are (i) the elimi-

nation of pathogenic microorganisms and (ii) the reduction of the organic
matter to an acceptable level. Autothermal thermophilic aerobic diges-

tion (ATAD) is one method used to treat wastewater with non-pathogenic
thermophilic bacteria [9, 2]. The bacteria consume the organic matter and
kill pathogenic microorganisms with heat produced as a by-product of the

metabolic synthesis. This process is effective but costly, as it requires
continuous aeration. An intention of reduction of the high cost motivates

intensive mathematical studies of this process. A possibility to control the
process leads to a variety of optimal control problems, which are associated

with this process.

Some of these problems, such as the minimization of a pollutant con-

centration at the terminal time and construction of the attainable set were
considered in our earlier publications [3, 4]. The minimization of the total

energy consumption was presented at the 2012 Joint AMS–MAA math-
ematics meeting in Boston, USA [5]. In addition, [3] contains a fairly
complete review of the process of biological wastewater treatment and, in

particular, modeling and control of the ATAD. In this investigation, we
examine the minimization of a weighted sum of organic pollutants and

pathogenic microorganisms at the end of the fixed treating time interval
and the integral concentrations of oxygen and biomass over a finite time

interval.

2 Mathematical model

A mathematical model of the process can be formulated as the following
system of three ordinary differential equations with initial conditions:





ẋ1(t) = −x1(t)x2(t)x3(t) + u(t)(m − x1(t)), t ∈ [0, T ],

ẋ2(t) = −x1(t)x2(t)x3(t),
ẋ3(t) = x1(t)x2(t)x3(t) − dx3(t),

x1(0) = x0
1, x2(0) = x0

2, x3(0) = x0
3,

x0
1 ∈ (0, m), x0

2 > 0, x0
3 > 0.

(1)

Here, x1(t) is the concentration of oxygen; x2(t) is the concentration of
organic matter (pollutants); x3(t) is the concentration of the thermophilic

aerobic bacteria. This model assumes that the reaction is described by
the mass action law [6]. System (1) is considered on a fixed time interval
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[0, T ], which corresponds with the duration of the treatment of a single
batch. The first equation of the system describes the evolution of the

oxygen concentration in the treated sludge: here the first term defines
its consumption in the reaction and the second term characterizes the

rate of aeration. In the latter, the function u(t) is the air pumping rate,
which also serves as the control function for this model. The second

equation expresses the reduction of the pollutant concentration due to the
reaction. Finally, the third equation of system (1) describes the growth of
biomass of the thermophilic aerobic bacteria in the reaction; the bacteria

are also dying due to natural reasons at a per capita rate d. The system
is complemented with positive initial conditions and a constraint on the

oxygen pumping rate.
System (1) is a controlled system, where function u(t) is the con-

trol. The corresponding set of admissible controls D(T ) is composed of
all Lebesgue measurable functions u(t), which for almost all t ∈ [0, T ]

satisfy the inequalities:
0 ≤ u(t) ≤ umax,

where umax is the maximum rate of aeration.

The following Lemmas describe the properties of the phase variables
x1(t), x2(t) and x3(t) for system (1) and the upper boundary for x1(t).

Lemma 1 For an arbitrary control u(·) ∈ D(T ) the corresponding solu-

tions x1(t), x2(t), x3(t) of system (1) are defined for all t ∈ [0, T ] and

satisfy inequalities :

0 < x1(t) < xmax
1 , 0 < x2(t) < xmax

2 , 0 < x3(t) < xmax
3 , t ∈ (0, T ],

where

xmax
1 = x0

1 + mumaxT, xmax
2 = x0

2, xmax
3 = x0

3e
x0

2
T (x0

1
+mumaxT ).

Lemma 2 Inequality x1(t) < m holds for all t ∈ [0, T ] and all u(·) ∈

D(T ).

Proofs of Lemmas 1 and 2 are given in [3, 1]. These Lemmas allow us
to assume that xmax

1 = m.

3 Optimal control problems

We are now ready to formulate optimal control problems for system (1).
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The first problem, which we denote (P̂ ), is in a minimizing of a
weighted sum of the pollutant concentration at the moment T and the

cumulative biomass over interval [0, T ]:

Ĵ(u) = x2(T ) + γ

∫ T

0
x3(t)dt → min

u(·)∈D(T )
.

The second problem, which is denoted (P̃ ), is in a minimizing of a
weighted sum of the pollutant concentration at the moment T and the

cumulative concentrations of the biomass and oxygen over interval [0, T ]:

J̃(u) = x2(T ) +

∫ T

0

(
αx1(t) + βx3(t)

)
dt → min

u(·)∈D(T )
.

Here α, β and γ are given positive constants.
The existence of the optimal solutions for the optimal control prob-

lems (P̂ ) and (P̃ ) follows from [7]. Let function û∗(t) be the optimal
control for problem (P̂ ), and x̂∗(t) = (x̂ ∗

1(t), x̂
∗
2(t), x̂

∗
3(t))

� be the corre-
sponding optimal solution of system (1); respectively, let function ũ∗(t) be

the optimal control for problem (P̃ ), and x̃∗(t) = (x̃ ∗
1(t), x̃

∗
2(t), x̃

∗
3(t))

� be
the corresponding optimal solution of the system (1). Here � is transpose.

4 Pontryagin maximum principle

In order to analyze the optimal control problems (P̂ ) and (P̃ ), we apply

the Pontryagin Maximum Principle [8].
For problem (P̂ ), for the optimal control û∗(t) and the corresponding

optimal trajectory x̂∗(t) = (x̂ ∗
1(t), x̂

∗
2(t), x̂

∗
3(t))

� there is a non-trivial

solution ψ̂∗(t) = (ψ̂ ∗
1(t), ψ̂

∗
2(t), ψ̂ ∗

3(t))� of the adjoint system





˙̂
ψ ∗

1(t) = û∗(t)ψ̂
∗
1(t) + x̂ ∗

2(t)x̂
∗
3(t)

(
ψ̂ ∗

1(t) + ψ̂ ∗
2(t) − ψ̂ ∗

3(t)
)
,

˙̂
ψ ∗

2(t) = x̂ ∗
1(t)x̂

∗
3(t)

(
ψ̂ ∗

1(t) + ψ̂ ∗
2(t) − ψ̂ ∗

3(t)
)
,

˙̂
ψ ∗

3(t) = x̂ ∗
1(t)x̂

∗
2(t)

(
ψ̂ ∗

1(t) + ψ̂ ∗
2(t) − ψ̂ ∗

3(t)
)

+ dψ̂ ∗
3(t) + γ,

ψ̂ ∗
1(T ) = 0, ψ̂ ∗

2(T ) = −1, ψ̂ ∗
3(T ) = 0,

(2)

which satisfies the relationship

û∗(t) =





umax , when L̂(t) > 0,

u ∈ [0, umax] , when L̂(t) = 0,

0 , when L̂(t) < 0.

(3)
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Here, L̂(t) = ψ̂ ∗
1(t) is the switching function for problem (P̂ ); its definition

takes into account inequality m − x̂ ∗
1(t) > 0 for t ∈ [0, T ], which follows

from Lemma 2.

Likewise, for problem (P̃ ), for the optimal control ũ∗(t) and the cor-

responding optimal trajectory x̃∗(t) = (x̃ ∗
1(t), x̃

∗
2(t), x̃

∗
3(t))

� there is a

non-trivial solution ψ̃∗(t) = (ψ̃ ∗
1(t), ψ̃ ∗

2(t), ψ̃
∗
3(t))

� of the adjoint system





˙̃
ψ ∗

1(t) = ũ∗(t)ψ̃
∗
1(t)+

+ x̃ ∗
2(t)x̃

∗
3(t)

(
ψ̃ ∗

1(t) + ψ̃ ∗
2(t) − ψ̃ ∗

3(t)
)

+ α,

˙̃
ψ ∗

2(t) = x̃ ∗
1(t)x̃

∗
3(t)

(
ψ̃ ∗

1(t) + ψ̃ ∗
2(t) − ψ̃ ∗

3(t)
)
,

˙̃
ψ ∗

3(t) = x̃ ∗
1(t)x̃

∗
2(t)

(
ψ̃ ∗

1(t) + ψ̃ ∗
2(t) − ψ̃ ∗

3(t)
)

+ dψ̃ ∗
3(t) + β,

ψ̃ ∗
1(T ) = 0, ψ̃ ∗

2(T ) = −1, ψ̃ ∗
3(T ) = 0,

(4)

such that the relationship

ũ∗(t) =





umax , when L̃(t) > 0,

u ∈ [0, umax] , when L̃(t) = 0,

0 , when L̃(t) < 0,

(5)

hold. Here L̃(t) = ψ̃ ∗
1(t) is the switching function of problem (P̃ ); this

takes into account inequality m − x̃ ∗
1(t) > 0 for t ∈ [0, T ], which follows

from Lemma 2.

We have to define auxiliary functions:

Ĝ(t) = ψ̂ ∗
1(t) + ψ̂ ∗

2(t) − ψ̂ ∗
3(t), P̂ (t) = −ψ̂ ∗

3(t) − γd−1,

f̂(t) = x̂ ∗
2(t)x̂

∗
3(t) + x̂ ∗

3(t)x̂
∗
1(t) − x̂ ∗

1(t)x̂
∗
2(t), t ∈ [0, T ]

for problem (P̂ ), and similarly, the functions:

G̃(t) = ψ̃ ∗
1(t) + ψ̃ ∗

2(t) − ψ̃ ∗
3(t) + α

(
x̃ ∗

2(t)x̃
∗
3(t)

)−1
,

P̃ (t) = −ψ̃ ∗
3(t) + α

(
x̃ ∗

2(t)x̃
∗
3(t)

)−1
− βd−1,

f̃(t) = x̃ ∗
2(t)x̃

∗
3(t) + x̃ ∗

3(t)x̃
∗
1(t) − x̃ ∗

1(t)x̃
∗
2(t), t ∈ [0, T ]

for problem (P̃ ).
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Now the adjoint system (2) for problem (P̂ ) can be reformulated as
the following system of equations for the functions L̂(t), Ĝ(t), P̂ (t):





˙̂
L(t) = û∗(t)L̂(t) + x̂ ∗

2(t)x̂
∗
3(t)Ĝ(t), t ∈ [0, T ],

˙̂
G(t) = û∗(t)L̂(t) + f̂(t)Ĝ(t) + dP̂ (t),
˙̂
P (t) = −x̂ ∗

1(t)x̂
∗
2(t)Ĝ(t) + dP̂ (t),

L̂(T ) = 0, Ĝ(T ) = −1, P̂ (T ) = −γd−1.

(6)

Likewise, the adjoint system (4) for problem (P̃ ) can be now formu-
lated as the system of equations for the functions L̃(t), G̃(t), P̃ (t):





˙̃
L(t) = ũ∗(t)L̃(t) + x̃ ∗

2(t)x̃
∗
3(t)G̃(t), t ∈ [0, T ],

˙̃
G(t) = ũ∗(t)L̃(t) + f̃(t)G̃(t) + dP̃ (t),
˙̃
P (t) = −x̃ ∗

1(t)x̃
∗
2(t)G̃(t) + dP̃ (t) + αx̃ ∗

1(t)(x̃
∗
2(t))

−1,

L̃(T ) = 0, G̃(T ) = −1 + α
(
x̃ ∗

2(T )x̃ ∗
3(T )

)−1
,

P̃ (T ) = α
(
x̃ ∗

2(T )x̃ ∗
3(T )

)−1
− βd−1.

(7)

We use systems (6) and (7) for the analysis of the switching functions L̂(t)
and L̃(t), respectively.

5 Properties of the switching function for

problem (P̂ )

Analysis of the Cauchy problem (6) leads to the following Lemmas, which
describe properties of the switching function L̂(t).

Lemma 3 The switching function L̂(t) is not zero on any finite subinter-

val in [0, T ].

Remark 1. By Lemma 3 and relationship (3), the optimal control û∗(t)
is a piecewise constant function, which takes values {0, umax}.

Lemma 4 The switching function L̂(t) has at most two zeros on the in-

terval [0, T ].

Remark 2. The proof of this assertion is conducted by arguments, which
are similar to the arguments presented in [3, 1].
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Lemma 5 There exists the value θ̂ ∈ [0, T ), such that the inequality

L̂(t) > 0 holds on the interval (θ̂, T ).

Remark 3. It follows from Lemma 5 and relationship (3), that û∗(t) =

umax on the interval (θ̂, T ]. This implies that for problem (P̂ ) the optimal
control process must end with the maximum aeration rate.

6 Types of optimal control for problem (P̂ )

Lemma 4, Remarks 1 and 3, relationship (3) and the initial conditions of
system (6) enable us to make conclusions about possible types of optimal
control û∗(t).

Theorem 1 For problem (P̂ ), the optimal control û∗(t) can be:

either a constant function

û∗(t) = umax, t ∈ [0, T ]; (8)

or a piecewise constant function with one switching of the type

û∗(t) =

{
0 , for 0 ≤ t ≤ θ̂∗,

umax , for θ̂∗ < t ≤ T,
(9)

where θ̂∗ ∈ (0, T ) is the moment of switching.

7 Solving problem (P̂ )

Problem (P̂ ) can be solved using the following procedure. For an arbitrary

value θ ∈ [0, T ] we define control uθ(t) as

uθ(t) =

{
0 , for 0 ≤ t ≤ θ,

umax , for θ < t ≤ T.
(10)

It is easy to see that control uθ(t) defined in this way includes all possible
types (8), (9) of the optimal control û∗(t).

System (1) can be integrated on interval [0, T ] with control uθ(t). The

functions xθ
2(t) and xθ

3(t), which correspond to this control, then should

be substituted into functional Ĵ(u). This yields a function

F̂ (θ) = Ĵ(uθ), θ ∈ [0, T ],
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which is a function of a single variable θ ∈ [0, T ], and hence problem (P̂ )
is now reduced to a constrained minimization problem

F̂ (θ) → min
θ∈[0,T ]

. (11)

Methods for numerical solution of such problem are well-known [10]. We
provide and discuss some numerical results in Section 11.

8 Properties of the switching function for

problem (P̃ )

The analysis of the Cauchy problem (7) leads to the following conclusions

about properties of the switching function L̃(t).

Lemma 6 The switching function L̃(t) is not zero on any finite subinter-

val in [0, T ].

Remark 4. It is clear from Lemma 6 and relationship (5) that the optimal

control ũ∗(t) is a piecewise constant function with values {0, umax}.

Lemma 7 The switching function L̃(t) has at most three zeros on the

interval [0, T ].

Lemma 8 For α > x̃ ∗
2(T )x̃ ∗

3(T ) there exists the value θ̃ ∈ [0, T ), such

that the inequality L̃(t) > 0 holds on the interval (θ̃, T ).

For α < x̃ ∗
2(T )x̃ ∗

3(T ) there exists the value θ̃ ∈ [0, T ), such that the

inequality L̃(t) < 0 is valid on the interval (θ̃, T ).

Lemma 9 If α = x̃ ∗
2(T )x̃ ∗

3(T ), then the behavior of the function L̃(t)

depends on the value of (1− βd−1). If 1− βd−1 ≤ 0, then there exists the

value θ̃ ∈ [0, T ), such that the inequality L̃(t) < 0 holds on the interval

(θ̃, T ). If 1 − βd−1 > 0, then there exists the value θ̃ ∈ [0, T ), such that

the inequality L̃(t) > 0 is valid on the interval (θ̃, T ).

Remark 5. By Lemmas 8 and 9 and relationship (5), there is an interval
(θ̃, T ], such that, depending on values of α and β, the optimal control
ũ∗(t) takes the value either 0, or umax. This implies, that, in contrast to

problem (P̂ ) (see Remark 3), for problem (P̃ ) the optimal process can end
as at the maximum as at minimum aeration rate.

Remark 6. The proofs of Lemmas 6–9 are similar to the proofs of Lem-
mas 3–5.
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9 Types of optimal control for problem (P̃ )

Lemma 7, Remarks 4 and 5, and relationship (5), together with the initial
conditions of system (7), allow us to make conclusion about types of the

optimal control ũ∗(t), which are possible for problem (P̃ ).

Theorem 2 For problem (P̃ ), the optimal control ũ∗(t) can be:

either a constant function of the type either

ũ∗(t) = 0, t ∈ [0, T ], (12)

or

ũ∗(t) = umax, t ∈ [0, T ]; (13)

or a piecewise constant function with one switching of the type either

ũ∗(t) =

{
umax , for 0 ≤ t ≤ θ̃∗,

0 , for θ̃∗ < t ≤ T,
(14)

or

ũ∗(t) =

{
0 , for 0 ≤ t ≤ θ̃∗,

umax , for θ̃∗ < t ≤ T,
(15)

where θ̃∗ ∈ (0, T ) is the moment of switching ;
or a piecewise constant function with two switchings of the type either

ũ∗(t) =





0 , for 0 ≤ t ≤ θ̃ ∗
1,

umax , for θ̃ ∗
1 < t ≤ θ̃ ∗

2,

0 , for θ̃ ∗
2 < t ≤ T,

(16)

or

ũ∗(t) =





umax , for 0 ≤ t ≤ θ̃ ∗
1,

0 , for θ̃ ∗
1 < t ≤ θ̃ ∗

2,

umax , for θ̃ ∗
2 < t ≤ T,

(17)

where θ̃ ∗
1, θ̃

∗
2 ∈ (0, T ) are the moments of switching.

10 Solving problem (P̃ )

We now can describe a method of solving problem (P̃ ). Let us define a
set

Λ =
{
θ = (θ1, θ2, θ3) ∈ R3 : 0 ≤ θ1 ≤ θ2 ≤ θ3 ≤ T

}
.
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For an arbitrary point θ ∈ Λ we can define a control uθ(t) as

uθ(t) =





0 , for 0 ≤ t ≤ θ1,

umax , for θ1 < t ≤ θ2,

0 , for θ2 < t ≤ θ3,

umax , for θ3 < t ≤ T.

(18)

It is easy to see that, assuming that the corresponding values θ1, θ2 and θ3

are given, control uθ(t) includes all possible types (12)–(17) of the optimal

control ũ∗(t).
We now substitute control uθ(t) into system (1) and integrate this sys-

tem over interval [0, T ]. This yields functions xθ
1(t), xθ

2(t) and xθ
3(t), which

correspond to this control, and which we then substitute into functional

J̃(u). The result is a function of three variables

F̃ (θ1, θ2, θ3) = J̃(uθ), (θ1, θ2, θ3) ∈ Λ.

Problem (P̃ ) is now reduced to a problem of constrained minimizing

F̃ (θ1, θ2, θ3) → min
(θ1,θ2,θ3)∈Λ

, (19)

which can be solved by the same methods as the problem (11).

11 Numerical results

The following examples demonstrate the methods of solving problems (P̂ ),
(P̃ ), which were described above.

Example 1. (E-1) The initial conditions and parameters of system (1)
are:

x0
1 = 1.0000, x0

2 = 1.0000, x0
3 = 1.0000,

m = 2.0000, d = 1.0000, umax = 4.0000, T = 1.0000.

Example 2. (E-2) The initial conditions and parameters of system (1)
are:

x0
1 = 0.0002, x0

2 = 30.0000, x0
3 = 0.0300,

m = 0.0050, d = 0.2400, umax = 4.0000, T = 6.0000.

Example 3. (E-3) The initial conditions and parameters of system (1)

are:

x0
1 = 0.0019, x0

2 = 2.4980, x0
3 = 0.0874,

m = 0.0480, d = 0.2400, umax = 4.0000, T = 12.0000.
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Numerical solutions of problem (11) for Examples 1–3 are shown in
Table 1. Here θ∗ is the moment of switching of the piecewise constant

optimal control u∗
θ(t) = u∗(t), defined by formula (10); Ĵ∗ is the mini-

mum value of the functional Ĵ(u) and simultaneously the minimum of the

function F̂ (θ) of the problem (11).

γ = 0.005 γ = 0.5 γ = 2.5 γ = 5.0 γ = 10.0

E-1 θ∗ = 0.000 θ∗ = 0.000 θ∗ = 0.413 θ∗ = 0.663 θ∗ = 0.818

Ĵ∗ = 0.2242 Ĵ∗ = 0.7004 Ĵ∗ = 2.5572 Ĵ∗ = 4.6998 Ĵ∗ = 8.9063

E-2 θ∗ = 0.000 θ∗ = 2.600 θ∗ = 5.382 θ∗ = 5.658 θ∗ = 5.814

Ĵ∗ = 29.9849 Ĵ∗ = 30.0459 Ĵ∗ = 30.2395 Ĵ∗ = 30.4794 Ĵ∗ = 30.9591

E-3 θ∗ = 0.000 θ∗ = 8.592 θ∗ = 11.352 θ∗ = 11.640 θ∗ = 11.808

Ĵ∗ = 2.4424 Ĵ∗ = 2.6692 Ĵ∗ = 3.3639 Ĵ∗ = 4.2311 Ĵ∗ = 5.9654

Table 1: Results of solving of problem (P̂ ) for Examples 1–3.

Numerical solutions of problem (19) for Examples 1–3 are shown in
Table 2. Here θ∗1, θ∗2, θ∗3 are the moments of switching of the piecewise

constant optimal control u∗
θ(t) = u∗(t), defined by formula (18); J̃∗ is the

minimum value of the functional J̃(u) and simultaneously the minimum

of the function F̃ (θ1, θ2, θ3) of the problem (19).

α = 0.001 α = 0.001 α = 0.5 α = 2.5 α = 5.0
β = 5.0 β = 50.0 β = 5.0 β = 50.0 β = 100.0

E-1 θ∗
1 = 0.000 θ∗

1 = 0.000 θ∗
1 = 0.000 θ∗

1 = 0.000 θ∗
1 = 0.000

θ∗
2 = 0.000 θ∗

2 = 0.000 θ∗
2 = 0.000 θ∗

2 = 0.000 θ∗
2 = 0.000

θ∗
3 = 0.660 θ∗

3 = 0.950 θ∗
3 = 1.000 θ∗

3 = 1.000 θ∗
3 = 1.000

J̃∗ = 4.6582 J̃∗ = 42.2092 J̃∗ = 43.9751 J̃∗ = 87.4041 J̃∗ = 87.4041

E-2 θ∗
1 = 0.000 θ∗

1 = 0.000 θ∗
1 = 0.000 θ∗

1 = 0.000 θ∗
1 = 0.000

θ∗
2 = 0.000 θ∗

2 = 0.000 θ∗
2 = 0.000 θ∗

2 = 0.000 θ∗
2 = 0.000

θ∗
3 = 5.640 θ∗

3 = 5.940 θ∗
3 = 6.000 θ∗

3 = 6.000 θ∗
3 = 6.000

J̃∗ = 30.4817 J̃∗ = 34.8297 J̃∗ = 30.4829 J̃∗ = 34.8304 J̃∗ = 39.6610

E-3 θ∗
1 = 0.000 θ∗

1 = 0.000 θ∗
1 = 0.000 θ∗

1 = 0.000 θ∗
1 = 0.000

θ∗
2 = 0.000 θ∗

2 = 0.000 θ∗
2 = 0.000 θ∗

2 = 0.000 θ∗
2 = 0.000

θ∗
3 = 11.520 θ∗

3 = 11.760 θ∗
3 = 11.760 θ∗

3 = 11.760 θ∗
3 = 11.760

J̃∗ = 4.1973 J̃∗ = 19.5011 J̃∗ = 4.2039 J̃∗ = 19.5338 J̃∗ = 36.5708

Table 2: Results of solving of problem (P̃ ) for Examples 1–3.

Numerical experiments for problem (P̂ ) showed that for Examples 1–
3 the corresponding optimal control û∗(t) is either constant function, or
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piecewise constant function with one switching of the types (8), (9). Ana-
logical experiments for problem (P̃ ) showed that for Examples 1–3 the

corresponding optimal control ũ∗(t) is either constant function, or piece-
wise constant function with one switching of the types (12), (15).

In Figures 1-4 for Example 2 the graphs of the optimal controls û∗(t),
ũ∗(t) are presented for different values of constants γ and α, β, respec-

tively.
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Figure 1: Optimal control û∗(t) for γ = 0.005.
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Figure 2: Optimal control û∗(t) for γ = 0.5.
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Figure 3: Optimal control ũ∗(t) for α = 0.001, β = 5.0.
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Figure 4: Optimal control ũ∗(t) for α = 0.5, β = 5.0.

12 Conclusion

In this paper we consider two optimal control problems for a nonlinear
three-dimensional system of ordinary differential equation that model the
process of wastewater biotreatment. The objective functionals define ei-

ther the weighted sum of the concentration of pollutant at the end of
the time interval and the cumulative biomass throughout the interval, or

the weighted sum of the pollutant at the end of the time interval and
the cumulative biomass and oxygen throughout the interval. The Pon-
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tryagin Maximum Principle enables us to establish the structure of the
optimal controls for these problems and to simplify the problems to a

finite-dimensional constrained minimization. Results of numerical exper-
iments demonstrate the optimal aeration rates at different parameters of

the model.
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