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Abstract

Kullback-Leibler information allow us to characterize a family of dis-
tributions denominated Kullback-Leibler-Symmetric, which are distance
functions and, under some restrictions, generate the Jensen’s equality
shown by [1], in this paper denominated Jensen-Equal. On the other hand,
[5] and [7] showed that graph theory gives conditions to define a new mea-
surable space and, therefore, new distances, in particular, the distance char-
acterized by [2], denominated Geodesic Distance. The interaction of these
ideas allow us to define a new distribution, denominated Geodesic Distri-
bution which, under graph theory as center and radius of a graph, we can to
develop optimization methodologies based in probabilities of attendance.
We obtain many applications and the proposal method is very adaptive. To
illustrate, we apply this distribution in spatial statistics.

Keywords: Kullback-Leibler information; graph theory; geodesic distance; geodesic
distribution.

Resumen

La información de Kullback-Leibler permite caracterizar una familia
de distribuciones que denominamos Kullback-Liebler-Simétricas de las
cuales tenemos distribuciones que son funciones de una distancia que bajo
restricciones genera la igualdad en la relación de Jensen mostrados por
[1], las que denominamos Jensen-Igual. Por otra parte, [5] y [7] pre-
sentan que la teoría de grafos permite definir un espacio medible y por
tanto nuevas distancias, en particular la caracterizada por [2] denominada
distancia Geodésica. La interacción de las dos ideas permite inducir una
distribución que denominaremos Geodésica, la cual bajo técnicas de la
teoría de grafos, como el centro y el radio de un grafo, permite desa-
rrollar metodologías de optimización en función de las probabilidades de
atendimiento. Obtenemos muchas áreas de aplicación y muchas adapta-
ciones, en las cuales, por ejemplo, aplicamos en un problema de estadística
espacial.

Palabras clave: información Kullback-Leibler; teoría de grafos; distancia geodésica;
distribución geodésica.
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1 Introduction

Kullback-Leibler information, discussed in [6], measures how two informations
are far from each other in the sense of likelihood. That is, if one observation
came from a specific distribution, with what degree of certainty you can say that
did not come from another distribution?

Let P and Q be two probability measures in a space where both measures
are absolutely continuous with respect to a common measure µ. Let p and q be
their densities. The Kullback-Leibler Information is given by

Lkl
X(P, Q) =

∫

log

(

p(x)

q(x)

)

p(x)dµx = Ep

[

log

(

p(x)

q(x)

)]

. (1)

In general, Lkl
X(P, Q) is not a metric since Lkl

X(P, Q) 6= Lkl
X(Q, P ). The

sum Lkl
X(P, Q) + Lkl

X(Q, P ) is symmetric and it is known as Kullback-Leibler
divergence. In general, divergence fails in the triangle inequality, so it is not a
metric ([9]).

In this paper, we study conditions for which the distribuitions are Kullback-
Leibler-Symmetric and with these results, we will utilize the geodesic distance
to define a distribution in graphs.

2 Preliminary

2.1 Conditions for the Kullback-Leibler-Symmetric

Definition 1 A function f(·) is called Jensen-Equal if E[f(x)] = f [E(x)].

Let m(x; θ) be a metric such that m(x; θ) = f(x−θ), and let X be a random
variable with mean given by θ. Then the function g(x; θ) = m(x; θ1)−m(x; θ),
θ, θ1 ∈ R, is a Jensen-Equal function. For instance, we have two cases, as
follows.

Case 2 Consider m(x; θ) = (x − θ)2, that is, the quadratic metric.

Case 3 Consider m(x; θ) = |x − θ|, that is, the euclidean metric.

Proof of Case 2: Let X be a random variable with mean θ and g(x; θ) = (x −
θ1)

2 − (x − θ)2. Then

E
[

(x − θ1)
2 − (x − θ)2

]

= E
(

x2 − 2xθ1 + θ2
1 − x2 + 2xθ − θ2

)

= E
(

−2xθ1 + θ2
1 + 2xθ − θ2

)

= E
(

x (2θ − 2θ1) + θ2
1 − θ2

)

.
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Since x (2θ − 2θ1) + θ2
1 − θ2 is a linear function, then we can show that

E
[

(x − θ1)
2 − (x − θ)2

]

= (θ1 − θ)2 .

On the other hand,

[E (x) − θ1]
2 − [E (x) − θ]2 = (θ1 − θ1)

2 − (θ1 − θ)2 = (θ1 − θ)2 .

So E
[

(x − θ1)
2 − (x − θ)2

]

= [E (x) − θ1]
2 − [E (x) − θ]2, and g(x; θ) is a

Jensen-Equal function.

Proof of Case 3: Let X be a random variable with mean θ and g(x; θ) = |x −
θ1| − |x − θ|. Then we have that

E (|x− θ1| − |x − θ|) =















E (x) − θ1 − E (x) + θ , if θ ≤ x and θ1 ≤ x
−E (x) + θ1 − E (x) + θ , if θ ≤ x and θ1 ≥ x
−E (x) + θ1 + E (x) − θ , if θ ≥ x and θ1 ≥ x
(E (x) − θ1) + E (x) − θ , if θ ≥ x and θ1 ≤ x

=















−θ1 + θ , if θ ≤ x and θ1 ≤ x
θ1 + θ , if θ ≤ x and θ1 ≥ x
θ1 − θ , if θ ≥ x and θ1 ≥ x
−θ1 − θ , if θ ≥ x and θ1 ≤ x

= |θ1 − θ|. (2)

On the other hand,

|E (x) − θ1| − |E (x) − θ| = (|θ − θ1| − |θ − θ|) = |θ − θ1| . (3)

By (2) and (3), g(x, θ) is a Jensen-Equal function.

Generally, Lkl
X(P, Q) is not a metric since Lkl

X(P, Q) 6= Lkl
X(Q, P ). We will

now characterize the functions that define a metric.

Theorem 4 If g(m(x; θ)) = k · exp{w · m(x; θ)} = f(x; θ), where f(x; θ) is

a density function such that E(X) = c, c ∈ R and (k, w) ∈ R × R
−, then

Lkl
X(P, Q) is a metric.

Proof. To show that Lkl
X(P, Q) is a metric, we need to verify three conditions:

1. Lkl
X(P, Q) ≥ 0;

2. Lkl
X(P, Q) = Lkl

X(Q, P ), and

3. Lkl
X(P, R) ≤ Lkl

X(P, Q) + Lkl
X(Q, R).

Rev.Mate.Teor.Aplic. (ISSN 1409-2433) Vol. 21(2): 249–260, July 2014



GEODESIC DISTRIBUTION IN GRAPH THEORY 253

To show the condition 1, note that

E

(

log

(

f (x, θ1)

f (x, θ2)

))

= E

(

log

(

g (m (x, θ1))

g (m (x, θ2))

))

= E

(

log

(

k · exp (w · m (x, θ1))

k · exp (w · m (x, θ2))

))

= wE {m (x, θ1)− m (x, θ2)} ,

where θ1, θ2 ∈ R and the function m (x, θ1)−m (x, θ2) is Jensen-Equal. Hence

wE {m (x, θ1) − m (x, θ2)} = w {m [E (x) , θ1] − m [E (x) , θ2]}

= w [m (θ1, θ1) − m (θ1, θ2)]

= −w [m (θ1, θ2)] ≥ 0. (4)

Similarly, E
(

log
(

f(x,θ2)
f(x,θ1)

))

= −w [m (θ2, θ1)] and as m(·, ·) is a metric,

we have that −w [m (θ2, θ1)] = −w [m (θ1, θ2)].

Thus, Lkl
X(P, Q) = Lkl

X(Q, P ). With the same argument about m(·, ·), we
have that m (θ1, θ3) ≤ m (θ1, θ2)+m (θ2, θ3) and, therefore, −w [m (θ1, θ3)] ≤
−w [m (θ1, θ2)] − w [m (θ2, θ3)].

Since E
(

log
(

f(x,θi)
f(x,θj)

))

= −w [m (θi, θj)],

E

(

log

(

f (x, θ1)

f (x, θ3)

))

≤ E

(

log

(

f (x, θ1)

f (x, θ2)

))

+ E

(

log

(

f (x, θ2)

f (x, θ3)

))

(5)

and (5) shows that Lkl
X(P, R) ≤ Lkl

X(P, Q) + Lkl
X(Q, R).

Hence, as the Conditions 1, 2 and 3 are satisfied, Lkl
X(P, Q) is a metric.

Theorem 4 allow us to define a family of distributionsdenominated Kullback-
Leibler-Symmetric. For instance, the normal and double exponential (Laplace)
distributions belongs to Kullback-Leibler-Symmetric family.

2.2 Graph theory and geodesic distance

In this section, we will define some characteristics of graphs that will be used
throughout the paper.

Definition 5 A graph G is a pair (V (G), A(G)), where V (G) is a non-empty fi-

nite set of objects called vertices and A(G) is a set (possibly empty) of unordered

pairs of distinct vertices of G called edges or lines ([4]).
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The edge a = {v, w} is said to join the vertices v and w. If a = {v, w}
is an edge of a graph, then v and w are called adjacent vertices, while v and a

are incident, as are w and a. Furthermore, if a1 and a2 are distinct edges of G
incident with a common vertex, then a1 and a2 are adjacent edges. From now,
we will denote an edge by vw or wv. Also, the degree of a vertex v in a graph G
is the number of edges of G incident with v.

The cardinality of the vertex set of a graph G is called the order of G and is
denoted by O(G), or more simply o, and the cardinality of its edge is the size of
G, often denoted by T (G) or simply t. Therefore, a graph has order o and size t.

It is customary to define or describe a graph by means of a diagram in which
each vertex is represented by a point and each edge is represented by a line
segment or curve joining the points corresponding to v and w.

A graph G, with a vertices set V (G) = {v1, v2, . . . , vp} can also be de-
scribed by means of matrices. Then, A(G) = [aij], where

aij =

{

1 if vivj ∈ A(G)

0 if vivj 6∈ A(G).

Such matrix is called adjacency matrix of G.
Another matrix is called incidence matrix, that also represent a graph. Then

B(G) = [bij] where

bij =

{

1 if vi and aj are incidents
0 otherwise.

.

One important remark of a graph is when it is complete. A graph is said to be
complete if for a number n of vertices, the maximum number of edges defined is
n(n − 1)/2, that characterizes a complete graph, denoted by Kn ([3] ;[8]). The
next definition is extremely important to de development of this paper.

Definition 6 (Geodesic Distance) In the graph theory, the distance between two

vertices v and w in a graph G is the number of edges of the shortest path

that connects the vertices v and w, called Geodesic Distance and denoted by

dg(v, w).

Let G(A) and G(V ) be the set of edges and vertices, respectively, of a graph
G, vw the edge generate by v and w and G(A) = G1(A) ∪ G2(A) such that
G1(A)∩G2(A) = ∅. Thus, if v ∈ G1(V ) and w ∈ G2(V ), then dg(v, w) = ∞.
In other words, if there is no path connecting two vertices (that is, if the vertices
belongs to different sub-graphs unconnected), then the distance between these
two graphs is defined infinite. The eccentricity ε of a vertex v is the biggest
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geodesic distance between v and any other vertex. It can be thought of as how
much a node is far from the most distant node in the graph.

The property of eccentricity allow us to define the radius and the diameter of
a graph. The radius of a graph is the minimum eccentricity among the vertices
of the graph. The diameter of a graph is the maximum eccentricity of any vertex
of the graph. That is, the diameter is the greatest distance between any pair of
vertices. To find a diameter of a graph, first find the shortest path among each
pair of vertices. The greatest distance of anyone path is the diameter of the graph.

Definition 7 A central subgraph of G is the graph that has n vertices with de-

gree α and the smallest eccentricity. It will be denoted by GCnα.

Definition 8 The attractor graph of G is the graph that has the n vertices with

greatest degree, denoted by GAnβ
, where β represent the greatest degree of the

graph G.

3 Proposal

The Kullback-Leibler-symmetric provide us tools to analyse the regularly be-
havior of the densities which depends of a measure Jensen-Equal. Therefore, the
idea of planning dependent distributions based on distances follows in a natu-
ral way, and given the wide field of application, the geodesic distance was the
choice to represent the measure of this proposal.

Definition 9 If G is a graph with order c, then the Central Geodesic density

function is given by

f(v, α, k) = k exp{−dg(v,n θα},

where nθα is GCnα, dg(v, θα) is the Geodesic Distance between the vertex v and

the graph nθα and k is the normalizing constant, k ∈ [1,∞).

Definition 10 If G is a graph with order c, then the Attractor Geodesic density

function is given by

f(v, β, k) = k exp{−dg(v,n θβ},

where nθβ is GAβ
, dg(v, θβ) is the Geodesic Distance between the vertex v and

the graph nθβ and k is the normalizing constant, k ∈ [1,∞).

Rev.Mate.Teor.Aplic. (ISSN 1409-2433) Vol. 21(2): 249–260, July 2014



256 J.A. GONZÁLEZ – M.H. CASCONE

If m(h(x), θ) is a metric such that h(x) = z is a linear function of x and X is
a random variable with mean θ, then the function g(x; θ) = m(z, θ1) − m(z, θ)

is a Jensen-Equal function, θ, θ1 ∈ R. The lognormal model is a function of the
metric (log(x)−θ)2. However log(x) is not linear function of x and, therefore, it
is not Jensen-Equal. Hence, metrics of the form m(h(x), θ), such that h(x) = z
is linear function of x, induce a distribution function and if m is a continuous or
discrete measure, m induce a quantity or density function given by

f(x, θ) = k exp{w[m(z, θ)]},

where w ∈ R
−, k ∈ R

+ and θ ∈ R.
Some properties of Geodesic distribution defined above are given as follows:

1. dg(vi,n θα,β) ∈ N0.

2.
∞
∑

i=0

exp{−dg(vi,n θα,β)} = 1/k.

3.
∞
∑

i=0

exp{−dg(vi,n θα,β)} =

α−1
∑

i=0

ci exp{−i} = c1 +

α−1
∑

i=1

ci exp{−i}.

4.
α−1
∑

i=0

ci = c.

5. c1 = e, where e is the order of nθα,β.

It is important to note that working with central graphs tends to equate the
probability of meeting the vertices.

4 Application

The Kirke Channel is located on XII Region of Magallanes and Chilean Antarc-
tic. It is continuation of the Morla Vicuña channel and forms part of the maritime
access to Puerto Natales, capital city of Ultima Esperanza province. This chan-
nel was navigated by kawesqar people since 6000 years ago until XX century,
because inhabited its coast. Also, this channel separates south coast of Diego
Portales island in the north side of Vicuña Mackenna peninsula. Diego Portales
island is very charming for its vegetation and two lines of hills that form it.
Marks the boundary between the Pampa region and island region. Among its
hills, the most important are Diego and Portales, ending in a sharp and snow-
capped peaks, both about one thousand two hundred meters high.
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Its coast are clean except in three points marked by kelp bass. The main diffi-
culty to the navigation are the strong current and its 50 meters wide of navigable
sea in some parts. The following is the map of the vicinity of the Kirke channel.

Figure 1: Vicinity of Kirke channel.

Problem

The goal is to build a hospital that meets the needs of the ten villages. We
will assume that all these villages has the same population and the edges as the
same weight. The population of the villages think that the better place to build
the hospital is on Morla Vicuña channel for best location and needs a formal
authorization for this opinion.

The question is: Do you agree with these people? Why? If not, which village
do you believe is better to build the hospital? Why?

The abstract solution to this problem is given by the Figure 2, where C rep-
resents the Morla Vicaña channel.

Here, we will consider C the graph to be treated by the villages interest, and
after we will apply the attractor graph methodology to compare the results and
answer the question.
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Figure 2: Vicinity of Kirke channel.

The eccentricities are

A → 4, B → 3, C → 4, D → 5, E → 5,

F → 5, G → 6, H → 6, I → 5, J → 5,

and therefore the eccentricity of G is Ecc(G) = 6.

The vertex C has eccentricity 4, so we say that XC ∼ Geodesic(1θ4). The
attractor graph is constituted by the vertex A, where the degree of this vertex is
β = 5. As in the vertex C, we will denote XA by XA ∼ Geodesic(1θ5).
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In the first case, the distribution function is given by

Table 1: First case CDF.

x G F A B C

P (X = x) 0,016 0,042 0,115 0,115 0,312
x D E I J H

P (X = x) 0,115 0,115 0,115 0,042 0,016

In the second case, the distribution function is given by

Table 2: Second case CDF.

x D E B C A

P (X = x) 0,040 0,040 0,109 0,109 0,296
x F I J G H

P (X = x) 0,109 0,109 0,109 0,040 0,040

5 Conclusions

Thus, by the methodology here developed, Vicuña Morla channel is not the best
place to build a hospital because the probabilities of meeting the villages near
Vicuña Morla has higher variability than the probabilities obtained by the attrac-
tor graph method.

This methodology tends to homogenize the probability of meeting, so the
best place to build a hospital is Newton Island (vertex A).

In future works, the constant w might assume different weights according to
the situation, for instance, car traffic, blood pressure and others.
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