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Abstract

We introduce pseudoquaternions as an effective tool to describe the vector analysis
in L3, and we use them to characterize null curves and null cubics in S2

1 .
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Resumen

Introducimos los pseudocuaterniones como una herramienta efectiva para describir
el anlisis vectorial de L3, y los usamos para caracterizar curvas nulas y cbicas nulas
en S2

1 .
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1. Introduction

Let L3 be the 3-dimensional Lorentzian space with inner product of signature −,+,+,
which will be denoted by dot.

In this paper we show that pseudoquaternions are an useful and natural tool to study
the elementary geometry of L3 and we have used them to characterize unitary null curves
in this space.
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2. Vector analysis in L3

As a generalization of complex numbers related with the system of quaternions we find
the pseudoquaternions [5], given by:

z = a + bi + ce + df (1)

where a, b, c, d ∈ R and the complex units hold the following multiplication table:

— i e f

i — −1 f −e
e — −f 1 −i
f — e i 1

The conjugate pseudoquaternion of z, (1), will be

z∗ = a − bi − ce − df

and its norm or modulus will be

N(z) = a2 + b2 − c2 − d2

Trivially,

z−1 =
z∗

N(z)

when it is possible, and also, if x and y are two pseudoquaternions we get

(x · y)∗ = y∗ . x∗ and N(x . y) = N(x) . N(y).

We say that a pseudoquaternion z, (1), is pure if a = 0.
Pure pseudoquaternions verify z∗ = −z and N(z) = −z2.
The distance between two pure pseudoquaternions z1 = b1i + c1e + d1f , z2 = b2i +

c2e + d2f is given by

d(z1, z2) =
√

−(b1 − b2)2 + (c1 − c2)2 + (d1 − d2)2

which coincides with the distance in L3.
The pseudoquaternions i,e,f are associated to the orthonormal vectors I,E,F .
If we note the inner product by dot, we have

I . I = −1, E . E = 1, F . F = 1

i.e., according to [3], I is timelike vector, E and F are spacelike vectors.
For all above we can identify the vectors of L3 with pure pseudoquaternions or equiv-

alently, with real linear combination of i, e, f .
We want to define an exterior product in L3 on the natural way, keeping in mind its

analogous in R3.
Let A = (a1, a2, a3), B = (b1, b2, b3) and C = (c1, c2, c3) be vectors in L3.
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Definition 1 The exterior product of A and B, A ∧ B, is the vector of L3 such that its
inner product with C is the determinant of the matrix




a1 −a2 −a3

−b1 b2 b3

c1 c2 c3


 .

Equivalently, we say

A ∧ B = det




i e f
a1 −a2 −a3

−b1 b2 b3




= (a3b2 − a2b3)i − (a1b3 − a3b1)e + (a1b2 − a2b1)f (2)

By straightforward computation we can verify

a) A ∧ A = 0

b) A ∧ B = −B ∧ A

c) λA ∧ B = A ∧ λB = λ(A ∧ B) si λ > 0

d) A ∧ B . B = A ∧ A . A = 0

e) (A + B) ∧ C = A ∧ C + B ∧ C

f) (A ∧ B) ∧ C = (A . C)B − (B . C)A

g) If A, B, C are vectors in L3 and a, b, c its corresponding pure pseudoquaternions,
it verifies

A ∧ B . C =
1
2
(abc − cba)

h) Let A, B, C be future-pointing timelike vectors in L3, [1]; A, B, C are on line if and
only if

|(B − A) ∧ (C − A)| = 0

3. Unitary null curves

A curve q(s) verifying q′(s) . q′(s) = 0 is called a null curve and if in addition satisfy
q(s) . q(s) = 1 is called unitary null curve. A null frame in L3 is an ordered triple of vectors
(E1, E2, E3) such that

E1 . E1 = E2 . E2 = 0, E1 . E2 = −1, E3 . E3 = 1,

E1 . E3 = E2 . E3 = 0 and det




E1

E2

E3


 = ±1

(3)
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Let (E1, E2, E3) be a null frame in L3. The orthonormal vectors I, E, F are the asso-
ciated orthonormal frame related to the null frame by

I =
1
2
(E1 + E2), E =

1
2
(E1 − E2), F = E3.

We take
E1 ∧ E2 = −E3, E2 ∧ E3 = E1 and E1 ∧ E3 = −E2

and we obtain

I ∧ E = F, E ∧ F =
−(I + E)

2
, F ∧ I =

(E − I)
2

and the others vanish.
A rotation in L3, around the origin, could be defined by the position of a null frame

(E1, E2, E3) respect to the initial basis I, E, F .
From the rotation defined by a pseudoquaternion q, the vectors Ei are associated to

the pseudoquaternions ei by

e1 = q∗ i q, e2 = q∗ e q, e3 = q∗ f q.

Explicity, if q = q0 + q1i + q2e + q3f we know that

q∗ = q0 − q1i − q2e − q3f eq = q0e − q1f + q2 − q3i
iq = q0i − q1 + q2f − q3e fq = q0f + q1e + q2i + q3

and we get

e1 = (q2
0 + q2

1 + q2
2 + q2

3)i + 2(q2q1 − q0q − 3)e + 2(q0q2 + q3q1)f
e2 = −2(q0q3 + q1q2)i + (q2

0 − q2
1 − q2

2 + q2
3)e − 2(q0q1 + q2q3)f

e3 = 2(q0q2 − q3q1)i + 2(q0q1 − q3q2)e + (q2
0 − q2

1 + q2
2 − q2

3)f

These are the components of the pseudoquaternions ei as well as components of vectors
Ei, i : 1, 2, 3.

At every point of an unitary curve se associate the null frame (E1, E2, E3) and following
[3] we have the Frenet’s equations:

dE1

ds
= −k1(s)E1 + k2(s)E3

dE2

ds
= −k1(s)E2 + k3(s)E3 (4)

dE3

ds
= k3(s)E1 + k2(s)E2

The “curvatures.are

k1 =
−dE1

ds
. E2, k2 =

dE1

ds
. E3, k3 =

−dE3

ds
. E2
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and in terms of the pseudoquaternion q and its derivated

k1 = 2(−q′0q3 + q0q
′
3 − q2q

′
1 + q1q

′
2)

k2 = 2(q′3q1 − q0q
′
2 + q2q

′
0 − q3q

′
1) (5)

k3 = 2(−q3q
′
2 − q2q

′
3 − q0q

′
1 − q1q

′
0)

Also we find that (5) are the relative components (respect to the null frame (E1, E2, E3))
of the instant rotation vector, [4],

H = −k2E
1 + k3E

2 − k1E
3

since dEi

ds = H ∧ Ei, i : 1, 2, 3.
The curve q = q(s) with s no proper time parameter, can be represented by the

pseudoquaternion q = q0(s) + q1(s)i + q2(s)e + q3(s)f , with the condition q . q = 1 and
q′ . q′ = 0 (q′ = dq

ds).
We will suposse that the qi(s) are C5, as [2].
At every point we can attach a null frame (Q1, Q2, Q3). Without loss of generality we

can choose Q1 as an scalar multiple of q′.
As Qi = Qi(s) we can write

dQi

ds
=

∑

j

wi
j Qj

with w1
1 = w2

2 = w1
2 = w2

1 = w3
3 = 0, w2

3 = −w3
1, w1

3 = −w3
2.

Now the Frenet’s equations are

dQ1

ds
= w1

3 Q3

dQ2

ds
= w2

3 Q3 (6)

dQ3

ds
= −w2

3 Q1 − w1
3 Q2

On the natural way, we can consider w1
3 as curvature and w2

3 as torsion.
Comparing (4) and (6) we obtain k1(s) must be zero and from [2], theor. 6.1 the curve is

a null straight line. We also obtain w1
3 = k2 and w2

3 = k3 and according to [3] (E1, E2, E3)
become a Cartan frame and the curve is called a Cartan-framed curve.

In order to know about k2 and k3 we study the osculating sphere in L3, i.e., the sphere
passing through four consecutive points of a curve.

Keeping in mind that dot means the inner product of signature −,+,+, the equation
of this sphere is

(x − c) . (x − c) − r2 = 0

where x is a generic point of the sphere, c its center and r its radius.
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It is well known that necessary and sufficient condition that the surface f(s) has contact
of order n at the point P with the curve is that at P the relation hold:

f(s) = f ′(s) = ..... = f (n)(s) = 0 and f (n+1)(s) 6= 0.

In our case n = 3, f(s) = (x − c) . (x − c) − r2 and the relations becomes

(x − c) . Q1 = 0
k2(x − c) . Q3 = 0

(x − c) . (−k2k3Q
1 − (k2)2Q2 + k′

2Q
3) = 0

We find (x − c) . (k2)2Q2 = 0 then k2 = 0.
The center is c = x + Q1 and the radius is zero.
For all above, we summarize in the following theorem.

Theorem 1 The curvatures (5) of a null curve is S2
1 are k1 = k2 = 0 or equivalently,

the null curves in S2
1 are null straight lines and there not exist osculating sphere of a null

spherical curve in L3.

At [2], pages 240 and 234, we find that a null cubics is a curve with k1 = 1 and
k2 = k3 = 0, thus

Corollary 1 There does not exist null cubics in S2
1 .
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