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Abstract

In this paper we prove that the generalized functions 6 (P, ) —§®)(P), §()(P_) —
§*)(~P) and 6516) (P) — 5§k) (P) are concentrated in the vertex of the cone P = 0 and
we find their relationship with the ultrahyperbolic operator iterated (k+1— %) times
under condition k > % —1.

Keywords: distributions, generalized functions, distributions spaces, properties of distri-
butions.
Resumen

En este trabajo se prueba que las funciones generalizadas §*)(P,) — ¢(*)(P),
sE(P_)y =5k (—P) yéik) (P)— 5§k) (P) estan concentradas en el vértice del cono P = 0
y encontramos sus relaciones con el operador ultrahiperbélico iterado (k41— %) veces
bajo la condicién k > 5 — 1.

Palabras clave: distribuciones, functiones generalizadas, espacios de distribuciones, propiedades
de distribuciones.
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1 Introduction

Let © = (21,22, -+, 2,) be a point of the n-dimensional Euclidean space R™.
Consider a quadratic form in n variables defined by

P:P(ac):x%—i—...—kxf,—xf,“—...—wzﬂ (1)
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where p + g = n is the dimension of the space.

We call ¢(x) the C* functions with compact support defined from R™ to R ([2],page
4).

From [1], page 253, formula (2), the distribution P? is defined by

(Pre) = | (P@) elwyie )

where A is a complex number and dx = dzxidxs...dx, . For Real(A) > 0, this integral
converges and is analytic function of A\. Analytic continuation to Real(A\) < 0 can be used
to extend the definition of (Pj_‘, 90) . Further from [1], page 254, we have,

(Pre) = [ a5 s 3)
where
W) = /Ooot%u—tm(u,w)dt (4)
¢(T7S) = (bl(u??]) (5)
b(rs) = / S, d,, (6)
R S - (7)

_ 2/.2 2
s = {Toat e Thig, (8)

dQ, and d€, are elements of surface are on the unit sphere in R” and R respectively.
Similarly we can also defined the generalized P? by

(Pro) = [ (P olain 9)
Further we obtain - .
(PL\,QD): /0 0T Ty () do (10)
where -
P (u) = i /0 557 (1 — £) by (v, v) . (11)

From (1) the P = 0 hypersurface is a hypercone with a singular point (the vertex) at the
origin.
On the other hand, from [1], page 249, we have,

(5(k)(P),<p) - /OOO [<QS%S>k {34—2@}] Py (12)
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and

<5(k)(P),<,p> — (~1)* /OOO [(274887”)]6{#’—2@}] s 1ds (13)

where ¢(r, s) is defined by the equation (6).
Also from [1], page 250, the generalized functions 5§k)(P) and 5ék)(P) are defined by

(689 (P).o) :/OOO [(28528)'“{811_2@}] g, (14)

S=Tr
and i
& 0 o (1, 8) _
5(k)P >:_1k2/ - p2—7 qld 15
(7Pre) =0f | H5mr) 77775 $11ds (15)
=S
where ¢(r, s) is r17Ps! =% multiplied by the integral of ¢ over the surface z3+x3+- - - :1712) =72
and a2, + a5, o+ xl = 8%
The integrals converges and coincide for
—2
R Pta—2 (16)
2
If, on the other hand,
-2
e (17)

these integrals must be understood in the sen se of their regularization (see [1], page 250).

Now in general 5§k)(P) and (5§k) (P) may not be the same generalized function.

Note that the definition of these generalized functions implies that in any case
k k
5" (P) = (~1)" 5" (~P). (18)
From [1], page 278, the following formulae are valid,
6 (Py) = (~1) KR 55— g1 P (19)

and
§F(P) = (—1)FEIR] s)=—p_1 P . (20)

On the other hand, from [1], page 278, for odd n, as well as for even n and k < § — 1 we
have,

dR(Py) = o (P) = 59 (P) (21)

and
s®(p_y = s (—p). (22)

While in the case of even dimension and k£ > § — 1

5 (Py) - 617 (P) (23)
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and
S (P) 5" (- P) (24)

are generalized functions concentrated at the vertex of the P = 0 cone ([1],page 279).
From [1], page 279 we have:
If p and ¢ are both even and if k > 5 — 1, then

(—1)ks®(Py) — 6W(PL) = agpp LF 72 {6(2)} (25)
while in all other cases
B (P_) = (~1)} B () | (26)
In (25)
(~1)$x3

Gk = g1 (g, — n)! 27

and L’ is a linear homogeneous diferential operation iterated j times defined by the
following formula

[ 2 o 2 |’
Oxy Oxy 0wy 0wy,
The operator L = izg +... izg — —822— — = —822— is often called ultahyperbolic.
Oxy Oz 8xp+1 8xp+q
From [1], page 255, (Pﬁ, gp) has two sets of singularities namely
A=—1,-2-3,... (29)
and n n
A=——,——1,...
27 2 ’ (30)
and from [1], pages 256-269 and page 352 we have ([4], page 139, formula (2.27)):
—1)k
Rlsre_r 1P} = ( k:') 5§k) (P) if p is even and ¢ odd, (31)
R N G O L PR
I$az—k—1 Py = X 0, (P) if p is odd and ¢ even, (32)
R] sxz_%_kPﬁ = 0if pis even and ¢ odd (33)
and 0
_1)r3
R] S)\:_%L_kp)\ __(Deme L¥{6(x}if p is odd and ¢ even. (34)

TARKIT (2 + k)

where L* is defined by the formula (28).
Similarly (Pi\,cp) has singularities in the same points that (Pi,cp) and taking into
account all that we have above about Pj_‘ remains true also for P? except that p and ¢

must interchanged, and in all the formulae 5§k)(P) must be peplaced by

5 (—P) = (~1)*s{ (P) (35)
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and (L) by (—L) (see ([1]), pages 279 and 352) we have,

PN Gt ) L5 PR
Rlsyz=—p1 P> = o 0y ' (—=P) if p is odd and ¢ even, (36)
o (DR e
Rlsyz=—p1 P> = o 07/ (—=P) if p is even and ¢ odd, (37)
R] S)\:_%L_kpi\ = 0if pis odd and ¢ even (38)
and Vo
“1irs
R S)\__Ll_kP)\ %(—L)k {6(z}if p is even and ¢ odd. (39)
If the dimension n of the space is even and p and q are even, P)‘ has simple poles at
A = —Z — k,where k is non-negative integer, and the residues are given by ([1], p.268 and
[4], p. 141)
PO G ) LA C )
Rlsa=—n_kp=0,1,2. P = n75 (P)+ (40)
L(5 +k)
(D Lk{s 41
ng) {o(=}, (41)

where L¥ is defined by (28).
If, on the other hand, p and ¢ are odd, Pi has pole of order 2 at A = —3 — k and from
[1], p.269 and [4], p.143, we have

_1)%+k—1 (m k1) (_1)‘1;17T%—1 P
L= BTG P o) - Lk
Rlsv 347} = "t (P)++ o g |95~ ¥(3)] - 14 00(@)
(42)
where ‘
I (x)
= 4
¥(e) = o (43)
and I'(z) is the function gamma defined by
[(z) = / e 2"z, (44)
0
([3], Vol.I, p.344).
For integral and half-integral values of the argument, ¢ (x) is given by
(k) = +1+1—|- + ! (45)
- 7 2 k—1°
w(k—i—l) = —y—2In(2)+2 1+1+ + ! (46)
2/ = oW 3 2%—1)

where « is Euler’s constant.
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Similarly
A (DR ey (-Deme
if p and ¢ are even, and
n +1 n
Ao D gy, LAl VL TN Y
Rlsse-g kP = T g P gy |4(3) ~ 9G] (- 6@)

(48)
if p and ¢ are odd

2 Relations of k-th derivative of Dirac delta in hypercone
with ultrahyperbolic operator

In this paragraph we prove that generalized functions 6) (P, ) — 5%16) (P) and 6®)(P_) —
(5§k)(—P) are concentrated in the vertex of the cone P = 0.

Theorem 1 Let k be non-negative integer and n even dimension of the space then the
following formulae are valid,

_niq . n
s® (P — 6M(P) = By p LMt if k> 51 (49)
where i .
(1) (=1)2m2
= 7 or p and q are both even, 50
k.p,q T +1(/<;—%+1)!f p q (50)
and

+1
_ (DR R
k=BT :
AP (=2 41)!

Bk,p,q
(51)

[Ww(5) —v(%)] LF3H{§(2)} for p and q are both odd.

PROOF: From (41),(47) and considering the formulae (19) and (20) under conditions k >
5 — Liand when p and ¢ are even, we have

N3

s (Py) — 6" (P) = (~1)Fag, kL3 {5(2)} . (52)

where a, ,,  is defined by (27).
Similarly from (42), (48) and considering the formulae (19) and (20) under conditions
k > 4§ — 1l,and when p and q are odd, we have

gtl n
(k) B (k) . (_1)k(_1)T7r§*1
OW(Py) = 6,7(P) = A E  (pmngy

(53)

[¢( ) — ¢(%)] Lk—3t1 {6(x)} for p and q are both odd.

[SliS]
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From (52) and (53) we obtain the formula (49),(50) and (51) which proves the theorem.
[

The formula (49) represent a relation between 6) (P, ) — 5§k) (P) and the ultrahyper-
—1.

bolic operator iterated k — 5 + 1 times under condition k£ > 5

Theorem 2 Let k be non-negative integer and n even dimension of the space, then the
following formulae are valid:

SW(P-) = 61" (—=P) = Dy L¥ 37 {3(w)} (54)
where . n
(—1)(=1)r
pg = - or p and q are both even, 55
k,p,q k_§+1(k—%+1)'f ( )
and .
E e

Dera = TG (56)

n

[w(%) _ 1/,(%)] LE—3+1 {6(x)} for p and q are both odd

PROOF: From (41),(47) and considering the formulae (19) and (20) under conditions k >
5 — L,and when p and ¢ are even, we have:

s (P_) — 60 (= P) = (~1)agn L5+ {6()} (57)

where ag,,  is defined by (27)
Similarly from (42), (48) and considering the formulae (19) and (20) under conditions
k> 5 —1, and when p and ¢ are odd, we have:
+1 n_
5(k)(P_) _ 5§k)(—P) _ (—1)qT7r7 1

T By (58)

[Qp(%) _ 7/)(%)] LE-5+1 {6(x)} for p and g are both odd

From the formulae (57) and (58) we obtain the formulae (54),(55) and (56) which proves
the theorem. m

The formula (54) represents a relation between 6*)(P_) — 5§k)(—P) with the ultrahy-
perbolic operator iterated k — § + 1 times under condition k > § — 1.

Theorem 3 Let k be non-negative integer and n even dimension of the space then the
following formulae are valid,

00 (P) — 68 (P) = Ay o L" 341 {5(2)} (59)

where

_ (=D(=DF(=1)inE
kpq = 4k_%+1( S for p and q are both even, (60)

o
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and

I\H-

Dk,p,q = (,_7})
(61)

W(%) _ Qp(g)] kg1 {6(x)} for p and q are both odd

PROOF: From (49) and (54) using (25), (50) and (60) under conditions %k > % — 1, and
when p and g are even, we have,

(—)(=Dk(=1) 32 [k—3+1 {5(z)} zg(k)(er) — (_1)k5(k)(p_) =

4B n gy
k k Dk~ F A _n
517(P) = 057 (P) + g L (b)) + (62)
M k—241
4k77+1(k 7L+1)L {5( )}
therefore ,
—1)(—DF(-1)272 4
58 (py — 6®) (py = { / LF=5+1 05(2)) . 63
1 (P) =487(P) FE( D) 2 {0(x)} (63)

2
Similarly from (49) and (54) using (26), (51) and (56) under conditions & > § — 1,and
when p and ¢ are odd, we have

51 (P) = 657 (P) = 6 (Py) — (~1)*)(P_)+

From the formulae (63) and (64) we obtain the formulae (59), (60) and (61) which proves
the theorem. m

The formula (59) represent a relation between (5%16) (P)—(Sgk) (P) with the ultrahyperbolic
operator iterated k — 4 + 1 times under condition k > § — 1.
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