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Abstract

A short introduction to goal problems in abstract gambling theory is given, along with
statements of some of the main theorems and a number of examples, open problems and refer-
ences. Emphasis is on the finite-state, countably-additive setting with such classical objectives
as reaching a goal, hitting a goal infinitely often, staying in the goal, and maximizing the
average time spent at a goal.
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Resumen

Se da una breve introducción a problemas de metas en teoŕıa abstracta del jugador, aśı como
el enunciado de algunos de los principales teoremas y un número de ejemplos, problemas
abiertos y referencias. Se hace énfasis en el caso de estado finito, contable aditivo, con objetivos
clásivos como alcanzar una meta, alcanzar una meta infinitamente abierta, permanecer en una
meta, y maximizar el tiempo promedio permanecido en una meta.
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1. Introduction

In the classical gamblers’ ruin problems (cf. Feller [F]) a gambler beginning with x0 dollars bets
$1 at each play, winning a dollar with probability p and losing a dollar with probability q = 1− p
, until he either goes broke (hits 0) or else reaches a given goal such as $1000. The successive
wins/losses are independent, and he has no control over the game or decisions to influence his
likelihood of winning.

In many real-life gambling situations, however, the gambler is not forced to make the same
wager at each step, but rather he is free to select from a variety of strategies. For example, in
red-and-black (cf. [DSa]) the gambler may at each step bet any amount b less than or equal to his
current fortune x and he then wins b dollars with probability p and loses b dollars with probability
q (i.e., he moves to x + b with probability p and to x − b with probability q).
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It is this freedom of selection of strategies wich is the essence of abstract mathematical gambling
theory, and the purpose of this article is to give a brief introduction to this rich and deep sub-
field of discrete-time stochastic control, with emphasis on finite-state (hence countably-additive)
gambling problems with fixed goals. As such, the ideas reviewed here are a small part of the general
abstract theory of gambling which includes general state spaces (including questions of measurable
and general non-measurable selection strategies) and general payoff or utility functions. Dubins
and Savage’s classic treatise [Dsa] is the basis for many of the ideas presented here; for a more
extensive introduction to the subject, and its application to the field of stochastic games, the reader
is referred to Maitra and Sudderth’s ([MS1]), ([MS2]) recent articles. Abstract gambling theory, in
turn, is part of the mathematical theory of stochastic processes, and is closely related to Blackwell’s
(e.g., [B1]) theory of dynamic programming.

2. Gambling problems and strategies

The purpose of this section is to give a formal mathematical description of gambling problems
and strategies; notation will generally follow that in [MS1].

A gambling problem is a triple (S, Γ, u) where: S is the state space (in this exposition always a
nonempty finite set), which represents the gambler’s possible fortunes; Γ is a function from S to
nonempty sets of probability measures defined on (the sigma algebra of all subsets of) S, where
Γ(x) represents the bets or gambles available to the player when his fortune is x ∈ S; and u is a
bounded function (called the payoff function) from SN to the real numbers which the gambler is
trying to maximize.

Example 2.1. (Red-and-black) S = {0, 1, . . . , 2g − 2}, Γ(x) = {δ(x)} for x ≥ g, and for x <
g, Γ(x) = {pδ(x+ j)+ qδ(x− j) : j = 0, 1, . . . , x} , where δ(a) is the dirac delta measure with mass
1 on the singleton {a} . The goal here is to reach at least g, so u is the function u(x1, x2, . . .) = 1
if xj ≥ g for some j, and = 0 otherwise. Note that Γ(0) = {δ(0)} (so 0 and all states x ≥ g are
absorbing states) and that for this classical formulation of red-and-black, a sequence of fortunes
which never reaches g is worthless, no matter how close to g it comes.

A strategy available to the gambler who has initial fortune x0 is a selection rule σ which
associates to each finite sequence of fortunes x0, x1, x2, . . . , xn a single gamble σ(x0, x1, . . . , xn) ∈
Γ(xn). Thus an initial gamble σ(x0) ∈ Γ(x0) is selected, and then for every subsequent stage of play,
one single gamble is identified from the set of gambles available at the current fortune. In general,
strategies may be heavily dependent on the past histories of fortunes, but two important natural
and comparatively simple classes of strategies are those of stationary strategies, which depend
only on the current fortune, and Markov strategies, which depend on the current fortune and
time. Thus a stationary strategy satisfies σ(x0, x1, . . . , xn) = γ(xn) for all x0, . . . , xn ∈ S, where
for each x ∈ S, γ(x) ∈ Γ(x) is a fixed gamble which will be used whenever the current fortune
is x; each such strategy corresponds to a single Markov chain on S with stationary transition
probabilities (selected to be in Γ). Similarly, a Markov strategy corresponds to a Markov chain on
S whose transition probabilities at time n are independent of past successions of states, formally,
σ(x0, x1, . . . , xn) = σ(x0, x

′
1, x

′
2, . . . , x

′
n) whenever xn = x′

n. (Note that by definition all stationary
strategies are Markov.)

Example 2.2. (Timid play in red-and-black). Define the strategy σt by
σt(x0, x1, . . . , xn) = pδ(xn + 1) + qδ(xn − 1) for all 0 < x < g. This is the stationary strategy
which selects the smallest possible nonzero bet at each (non-absorbing) state.

Example 2.3. (Bold play in red-and-black). Define the stationary strategy σb by σb(x0, x1, . . . , xn) =
pδ(xn + k) + qδ(xn − k) where for xn < g, k = min {xn, g − xn} is the largest available bet which
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will not overshoot the goal. So in particular if g = 1000, σb prescribes a bet of exactly of 3 dollars
if the current fortune is either 3 or 997 , etc.

Example 2.4. (A nonstationary Markov strategy in red-and-black). Define σM by σM (x0, x1, . . . , xn) =
σb(x0,...,xn) if n < 10, and = σt(x0, . . . , xn) if n ≥ 10. This simple Markov strategy switches from
bold play to timid play at time 10.

Example 2.5. (A non-Markov strategy in red-and-black). Define σN by
σN (x0, x1, . . . , xn) = σb(x0, x1, . . . , xn) if x1 < 3, and = δ(xn) otherwise. This somewhat irrational
strategy uses bold play at time n if the fortune at time 1 was < 3, and otherwise stagnates forever.

Each strategy σ induces a countably-additive probability measure Pσ on the Borel subsets of
SN in a natural way as follows. First, Pσ(x1 × SN) = σ(x0)({x1}), i.e., the probability that the
sequence starts with x1 is the measure of x1 under the initial gamble chosen, σ(x0) ∈ Γ(x0). Next
Pσ((x1, x2)×SN) = σ(x0)({x1}) ·σ(x0, x1)({x2}), etc. In other words, if X1, X2, . . . , represent the
fortunes at times 1, 2, . . . , then X1 has distribution σ(x0), and the conditional distribution of X2

given X1 = x1 is σ(x0, x1), etc. Thus a given strategy σ detrmines the complete joint distribution
Pσ of the stochastic process X1, X2, . . . of states via the standard extension from the measures of
those cylinder sets.

For example, in bold play σb for red-and-black (with g = 100, say, and x0 = 10), Pσb
(X1 =

10) = 0, Pσb
(X1 = 20, X2 = 40) = p2, Pσb

(X1 = 20, X2 = 0) = pq, etc.

3. The optimal return function and value of a strategy

Recall that the payoff function u is a bounded real-valued function on SN, the set of all infinite
sequences of states (often called histories), and that each strategy σ determines a unique probability
measure on the Borel subsets of SN.

The value of strategy σ is simply the expected payoff V (σ) with respect to the probability
distribution Pσ defined by σ, that is

V (σ) =
∫

SN
u dPσ

Example 3.1. In red-and-black, where the objetive is simply to reach the goal g (i.e.,
u(x1, x2,...) = 1 if xi ≥ g for some i, and = 0 otherwise), the value V (σ) of the strategy σ is
simply

V (σ) = Pσ(Xi ≥ g for some i ≥ 1),

and since the timid-play strategy σt,x starting at x corresponds to the classical gambler’s ruin
problem, its value is simply the probability that a simple random walk which from x and moves
to the right with probability p will reach g before reaching 0, and the classical solution (cf. [DSa,
p.170]) is

V (σt,x) = (
p

q
)g−x

1− (p
q )x

1− (p
q )g

Example 3.2. The corresponding value for bold play in red-and-black starting at x, σb,x, is more
complicated, but for small state spaces may be calculated easily as follows in the case g = 3.
V (σb,0) = 0 and V (σb,g) = 1 by definition, and V (σb,1) and V (σb,2) satisfy V (σb,1) = qV (σb,0) +
pV (σb,2), V (σb,2) = qV (σb,1) + pV (σb,g), which implies V (σb,1) = p2/(1 − qp) and V (σb,2) =
p/(1 − qp). (Note that for g = 3, σt = σb.)
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The optimal payoff function V is the real-valued function on S which is the optimal expected
payoff over all possible strategies starting at x

V (x) = sup{V (σ) : σ is a strategy starting at x}.

That is, V (x) represents the best a gambler can do starting at x.
An optimal strategy starting at x is a strategy at x satisfying

V (σ) = V (x).

In general, the values of general strategies and optimal payoff functions are difficult to obtain
explicitly, and a major contribution of [DSa] is a general theory which characterizes optimal payoff
functions.

For red-and-black, however, it is known that for favorable games (i.e., p > 1/2) timid play is
optimal [Br], and for unfavorable games (p ≤ 1/2) bold play is optimal [DSa, Theorem 5.3.1]. This
corresponds to the intuitively plausible idea that for favorable games, the random walk will tend to
drift to the right, so taking steps as small as possible will make this drift look almost deterministic,
making the probability of reaching the goal high. For unfavorable games however, the drift is to the
left, and small bets will be a poor strategy for exactly the same reason; playing just the opposite
by maximizing bets (bold play) is much better.

4. Goal problems

In a goal problem there is a fixed set of goal states G ⊂ S, and the payoff function u reflects
various objectives associated with G such as reaching G at least once, hitting G infinitely often,
staying in G forever, or maximizing the average time spent in G. This section will survey some of
the basic theorems about goal problems and give examples to illustrate them.

Reaching a Goal. If S is finite and Γ(x) is finite for each x ∈ S (that is, each state has only a
finite number of gambles available at it), then there is always a stationary optimal strategy [DSa,
Theorem 3.9.1] for the payoff

u(x1, x2, . . .) = 1 if xi ∈ G for some i ≥ 1, and = 0 otherwise.

In red-and-black, bold play σb is one such optimal stationary strategy if p ≤ 1/2, and timid play
σt if p > 1/2 . If Γ(x) is infinite for some x, there may exist no optimal strategies.

Example 4.1. S = {0, 1, g}, Γ(0) = {δ(0)}, Γ(1) = Γ(g) = {pδ(g) + (1 − p)δ(0) : p < 1}. Then
V (0) = 0, V (1) = 1, but V (σs) < 1 for any stationary strategy σs starting at state 1.

As is seen in the above example, however, there do exist arbitrarily good stationary strategies
(i.e., for each ε > 0 there is a stationary strategy σsε with V (σsε ) ≥ 1−ε). This is always the case for
finite-state goal problems with objective reaching the goal, which is a special case of [DSa, Theorem
3.9.2], and which was extended in [O, Theorem B] to countable S, and in [Su, Theorem 2.3] to a
much larger class of problems including many with uncountable S and finitely additive transition
probabilities. Generalizing in other directions, for countable S there is always a stationary strategy
which both (nearly) maximizes the probability of reaching the goal and (nearly) minimizes the
expected time to the goal [DH1, Theorem 4.2]. For finite S there is always a Markov strategy
which is monotonically improving and optimal is the limit along every history [HvW, Theorem
5.15], but such a strategy may not always be constructed by simply switching to a “better” gamble
at each successive return to a state; in some cases it is necessary to use certain gambles for arbitrary
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long time periods, then switch to a different gamble for an even larger time, and so on, as can be
seen Example 4.2 below.

Hitting a Goal Infinitely Often. In some goal problems, the objective is not just to reach the
goal once, but to hit the goal infinitely often with as high probability as possible, so

u(x1, x2,...) = ĺım
n→∞

sup IG(xn),

where IG(·) is the indicator function of the goal set G. Even if S has as few as three states,
there may be strategies which hit the goal infinitely often with high probability, but where each
stationary strategy is worthless for this objective (Example 4.1 above). On the other hand, in
all finite-state goal problems, there always exist Markov strategies which nearly maximize the
probability of hitting the goal infinitely often [Hi, Theorem 8.1], but the structure of such good
Markov strategies in general is much more complicated than just using a better gamble at each
time period.

Example 4.2. S = {0, 1, g}, Γ(0) = {δ(0)}, Γ(g) = {δ(1)}, Γ(1) = {3−nδ(0)+2−nδ(g)+(1−3−n−
2−n)δ(1) : n ∈ N}∪{δ(1)}. Note that state 0 is absorbing, state g is reflecting, and each of the sets
of gambles Γ(x) are closed. It can be checked using the conditional version of Borel-Cantelli (Lévy
0-1 Law) that there exist Markov strategies which are arbitrarily good (and which necessarily use
successive gambles for long time periods, roughly the order of 2n times), that no Markov strategy
using each gamble at most a fixed number of times N is good, and that limits of good strategies
are not good, since every good strategy necessarily uses gambles closer and closer to δ(1), itself a
worthless gamble.

Staying in the Goal. Analogous to the lim sup objective of hitting a goal infinitely often, the
payoff function

u(x1, x2, . . .) = ĺım
n→∞

inf IG(xn)

reflects the objetive of maximizing the probability that the process eventually stays in the goal
set G forever. For countable S with this lim inf payoff (and in fact for a much larges class of
payoffs), there always exist arbitrarily good Markov strategies [HP, Theorem 4.1]. That neither
good stationary strategies nor optimal Markov strategies exist in general can be seen in Example
4.1 above.

Maximizing the Average Time at a Goal. An objetive function which is between that of reaching
a goal set once and eventually staying in the goal set forever is the objective of maximizing the
average time spent in the goal, that is

u(x1, x2, . . .) = ĺım
n→∞

supn−1
n∑

j=1

IG(xj)

(for finite S, lim sup and lim inf are equivalent [DH2, Corollary to Theorem 2]).
If S is finite and Γ(x) is a closed set (total-variation norm) of transition probabilities for each

x, then there always exist nearly-optimal stationary strategies for the objetive of maximizing the
average time in the goal [DH2, Theorem 1], in contrast to the objective of hitting a goal infinitely
often , as seen in Example 4.2 above. If Γ is arbitrary, there always exist nearly-optimal Markov
strategies for this objetive [DH2, Theorem 2]. As with previous objetives, the limit of nearly-optimal
strategies may be worthless, as can be seen modifying Example 4.2 by letting Γ(g) = δ(g); all good
be worthless, as can be seen modifying Example 4.2 by letting Γ(g) = δ(g); all good strategies
starting at 1 use gambles close to δ(1), which is itself worthless for the average-time objetive as
well.
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Other Goal Payoffs. Other common payoffs in goal problems include those of discounted rewards
(u(x1, x2, . . .) =

∑∞
n=1 βnIG(xn) for 0 < β < 1 fixed); finite-horizon rewards (e.g., u(x1,x2, . . .) =∑T

n=1 IG(xn) for fixed T), supremum rewards, product rewards, etc., the interested reader is re-
ferred to [HP].

The proofs and applications of the above-mentioned results span a wide spectrum of standard
probability theory including Markov chains, martingales, 0− 1 laws, strong laws, randomizations,
sthochastics matrices, and dynamic programming, as well as intricate ad hoc arguments and broad
and deep general theory of inequalities for sthocastics processes in [DSa]; the references below are
starting points to this interesting and powerful subject.

5. Open problems

The fundamental gambling-theory text by Dubins and Savage [DSa] contains a well-indexed
list of open problems in this field; the following are several additional ones.

Q1. (cf. [Hi]) Do good Markov strategies exist in all countable-state goal problems with objective
of hitting the goal infinitely often ?

Q2. (cf. [HvW]) Do monotonically-improving limit-optimal strategies exist in all finite-state goal
problems with average reward payoff?

Q3. (cf. [St]) For what general class of goal problems do good measurable strategies always exist?

Q4. (cf. [Ho]) What are efficient algorithms for computation of optimal or good strategies in
various classes of goal problems?
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