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Abstract

Random processes are monitored over space and time by a network of stations
distributed across a spatial region. Auxiliary information is often gathered not only
at the stations but at other points across the region. The incorporation of auxiliary
information in some interpolation techniques has shown improvement on the inter-
polation results. The Empirical Orthogonal Functions (EOF) model is a well-known
eigenvector based prediction technique, widely used in meteorology and oceanography
for modeling the variability of the observed spatio-temporal random process. Simi-
larity matrices are constructed using available auxiliary information and included in
the EOF model to develop a spatial interpolation method. The resulting interpola-
tion technique will be applied to a real data set and the results compared to ordinary
kriging.

Keywords: EOF models, environmental monitoring, interpolation techniques, spatio-
temporal data analysis, similarity matrix.

Resumen

Los procesos aleatorios son controlados (monitoreados) sobre el espacio y el tiempo
por una red de estaciones distribuidas a lo largo de una región espacial. Información
auxiliar es recogida a menudo no solamente en las estaciones sino también en otros
puntos de la región. La incorporación de información auxiliar en algunas técnicas de
interpolación ha mostrado que los resultados de la interpolación se mejoran. El modelo
de Funciones Emṕıricas Ortogonales (EOF) es una conocida técnica de predicción
basada en vectores propios, usada ampliamente en meteoroloǵıa y oceanograf́ıa para
modelar la variabilidad de procesos estocásticos espacio-temporales observados. Se
construyen matrices de similitudes usando información auxiliar disponible e incluida
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en el modelo EOF para desarrollar un método de interpolación espacial. La técnica de
interpolación resultante será aplicada a un conjunto de datos reales y los resultados
serán comparados al ‘kriging’ ordinario.

Palabras clave: modelos EOF, control o monitoreo del ambiente, técnicas de interpo-
lación, análisis de datos espacio temporales, matriz de similitudes.

Mathematics Subject Classification: 65D05, 92H25

1 Introduction

To model continuous spatio-temporal random processes, defined as X(t, s), researchers
developed analysis techniques that intend to capture the variability over space and time.
These analysis techniques are used in order to model and understand the process, provide
data reduction, prediction models and interpolation methods.

Data used to fit these models are collected using a finite network of sites, S =
{s1, ..., sn}, which are established in a region of interest R with the purpose of moni-
toring a process. The distribution of the stations on R captures information about the
spatial variability of the process. If at each station, si ∈ S, data are collected over time,
then information about the temporal variability may be incorporated in the model as well.

Time and budget constraints limit the observation of the process to the selected sites
on S where the monitoring stations are placed. As the monitoring programs develop
over time, many programs have incorporated new sites in the network. The increase in
spatial coverage provides more information to be used for modeling techniques to describe
the spatio-temporal variability of the process. However, at the same time, a problem of
missing data results due to the different initiation dates for the stations that belong to the
network. A malfunctioning station causes another type of missing data associated with
a station network. In order to account for missing data in the model and the desire to
obtain estimates at non coverage sites in R, researchers were motivated to develop spatial
interpolation techniques. Spatial interpolation refers to the ability of a model to predict
the value of the random process X(t, s∗) at a fixed time t,for a given unsampled site s∗ in
R, using the observed sample sites or stations from the network S (Okabe et. al., 1992;
Cressie, 1991; Willmott and Robeson, 1995).

Spatial interpolation techniques are classified as global or local methods. The global
method makes use of all stations providing available data in the network S, while the
local method uses only selected nearby stations that have available information. The
local interpolation methods often identify a unique subregion of R in the vicinity of the
unobserved site, s∗. The information provided by the network stations that delimitate this
specific subregion is used to calculate the interpolated value of the process at s∗. Other
spatial interpolation methods extend the concept above by incorporating stations that are
located in nearby subregions (Okabe et. al., 1992; Watson and Philip, 1987).

Many of the spatial interpolation techniques calculate the interpolated value at the
unobserved site s∗ as a weighted sum of the data collected at the network stations,

X̂(s∗, t) =
∑

s

w(s, s∗)X(s, t) (1)



spatial interpolation of dry deposition using eof models 155

where w(s,s∗) denotes the weight for station s related to the unobserved site s∗, and X(s, t)
denotes the observed value at site s at fixed time t (Okabe et. al., 1992). Determination
of the weights varies among different methods. Most spatial interpolation methods rely on
the assumption that nearby sites tend to be more similar (high spatial correlation in terms
of the random process of interest) than sites more distant from each other. Therefore, local
interpolation estimates are based on observations of the monitored process at the nearby
network stations and results depend on the between-station variability. This between-
station variability is affected by the density of the network and may cause a reduction in
the precision of the estimates.

The availability of auxiliary variables highly correlated with the random process of
interest, and observed at a regional level, motivated researchers to attempt their incor-
poration into known interpolation methods (Willmott and Matsuura, 1995; Daly et. al.,
1994; Robeson, 1997; Willmott and Robeson, 1995). Their objective was to reduce the
between-station variability and improve the results of the interpolation techniques.

In this paper, a technique is introduced that incorporates auxiliary information in the
Empirical Orthogonal Functions (EOF) model. The EOF model is a technique used to
model the spatio-temporal random process. This analysis technique does not require any
assumption on the distribution or the variance-covariance matrix of the random process
(Obled and Creutin, 1986). The EOF model incorporates the spatio-temporal variability
of the process captured by the network of stations. It is a popular analysis technique
used in Meteorology and Oceanography for modeling as well as for data reduction. The
design-based EOF model, proposed by Muñoz-Hernández et. al. (1999), is a modification
to the usual EOF model analysis formulated under the assumption that a probabilistic
sampling design was used to select the monitoring network sites. The spatial variability
of the process is captured by the inclusion and joint inclusion density functions that
characterized the probability sampling design involved in the location of the sites. The
incorporation of the density functions into the EOF model reduces the instability in the
calculations of the eigenvectors caused by the use of the finite network of stations.

We propose to include auxiliary information in the design-based EOF model and illus-
trate how this prediction model can also be considered for spatial interpolation purposes.
Based on the auxiliary information, network sites that exhibit more similar attributes with
the unobserved site s∗ will be selected for the interpolation analysis. Under the assump-
tion that the auxiliary variables are highly correlated with the random process, we will
expect that the outcome of the random process at the unobserved site s∗ will also be sim-
ilar. A measure for this resemblance is called the coefficient of similarity. This coefficient
takes values between 0 and 1. A coefficient with a higher value reflects a higher similarity
between the two sites.

Approaches to calculate similarity coefficients depend whether the variables under
consideration are categorical or continuous. (Gower, 1971; Everitt, 1993). Depending on
the objective of the study and/or the numerical type of the variables, one method may
be more appropriate than another. One alternative similarity measure that captures this
imprecision of fuzziness is based in fuzzy set theory. The fuzzy set theory approach derives
similarity matrices from fuzzy and/or precise data. This approach takes advantage of the
assumption that auxiliary variables observed over the whole region of interest show a
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smooth variation from site to site, leading to more realistic similarity coefficients (Leung,
1988).

2 The empirical orthogonal functions model

Assume that a continuous, non-negative random process, X(t, s) is observed at n different
sites or locations in a region of interest D. Assume that a probability sampling design
was adopted in the selection of the sites and that the data is collected at each station at
periodic intervals in time.

One of the methods available to analyze spatio-temporal data that does not require
any assumption on the covariance matrix or on the variogram is the EOF model (Obled
and Creutin, 1986). Under regular conditions, the random field X(t, s) can be expanded
as the double convergent series:

X(t, s) =
∞∑

k=0

Zk(t)ϕk(s) (2)

where ϕk(s) constitutes an orthogonal set of functions that captures the spatial variabil-
ity of the process and are the solutions to the following second order Fredholm integral
equation ∫

D
C(s, s′)ϕk(s′)ds′ = λkϕk(s) (3)

where C(s, s′) =
∫
T X(t, s)X(t, s′)dt is the covariance function of the process. Equation

(2) is known as the Karhunen-Loéve expansion. Observe that ϕk(s) and λk constitute the
eigenvectors and eigenvalues of the integral Equation (3), respectively.

The random variable Zk(t), k = 1, . . . , that captures the time variability of the process,
is defined as:

Zk(t) =
∫

D
X(t, s)ϕk(s)dsZk(t) =

∫

D
X(t, s)ϕk(s)ds (4)

and satisfies ∫

T
Zj(t)Zk(t)dt = λkδjk (5)

where δjk = 1 if j = k and 0 otherwise.
Researchers have proposed different methods to numerically solve Equations (3) and

(4). Some numerical solutions proposed are based on some type of quadrature method
(Buell, 1978) or the consideration of spline basis functions (Obled and Creutin, 1986;
Wikle, 1995). Another feature to address in spatio- temporal analysis methods is the
effect of the spatial distribution of the network stations in the estimation process. If a
probabilistic sample of sites was selected, then the spatial distribution of the process is
captured by the sampling design and incorporated in the analysis by the inclusion proba-
bilities functions. This idea is presented in the design-based EOF models we proposed in
an earlier paper (Muñoz-Hernández et.al., 1999).
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3 The design-based EOF model

Let S = {s1, ..., sn} be a set of sites selected using a probability sampling design. Assume
that the random process X(t, s) is observed at these stations for a period of time T .
Let π(s) and π(s,s′) denote the inclusion density function at site s and the joint inclusion
density function for sites s and s′, respectively. The design-based EOF model is determined
by first solving the following eigenvector problem, which is the result of the application of
a method of moments approach to solve Equation (5),

CΦ = ΛΦ (6)

where the (i, j) element of the matrix C is defined as Ĉ(si,sj)

π(si,sj)
, Ĉ(si, sj) is the (i, j)-entry

of the sample covariance matrix, π(si, sj) is the joint inclusion density function for sites
si and sj , Φ is a matrix with its ith column equal to the ith eigenvector of C, and Λ is
a diagonal matrix where the ith diagonal entry is the eigenvalue corresponding to the ith
eigenvector.

The solution of the eigenvector problem provides a total of n (the number of network
stations) eigenvectors. After selecting K (K < n) eigenvectors that retained more than
90% of the total variability of the process, ϕ̂k, k = 1, . . . ,K, the unbiased estimator of the
random variables Zk(t) is computed as follows:

Ẑk(t) =
∑

s∈S

X(t, s)
π(s)

ϕ̂k (s) . (7)

The design-based EOF model is then obtained as:

X̂(s, t) =
K∑

k=1

Ẑk(t)ϕ̂k (s) . (8)

4 Similarity matrices. Standard classification and fuzzy set

approaches.

Assume that S = {s1, ..., sn} is a collection of sites for which values of p auxiliary vari-
ables, Y1, . . . , Yp, were recorded. We can calculate a degree of resemblance or similarity
coefficient, denoted as rijk, between two sites si and sj with respect to the kth auxiliary
variable. This coefficient ranges between 0 and 1. Values close to 1 denote high similarity
or resemblance between the two sites, si and sj , with respect to the kth auxiliary variable.
Values close to 0 denote low similarity between the two sites si and sj with respect to the
kth auxiliary variable.

Calculation of the similarity coefficient varies depending on the nature of the auxiliary
variable considered. A review of similarity measures can be found in Legendre and Leg-
endre (1983). If the auxiliary variable is dichotomous (say presence and absence), Gower
(1971) defined a similarity measure, rijk, as

rijk =
{

1 if the characteristic is present in both sites
0 otherwise

(9)
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if the kth auxiliary variable is a multinomial, define

rijk =
{

1 if both sites have the same value
0 otherwise

(10)

and if the kth auxiliary variable is quantitative, the calculations of the similarity coefficient
is done by measuring the distance or dissimilarity, dijk, between two sites. Distance
is defined as a measure of the difference in the auxiliary variables between two sites.
These quantities are converted into similarity coefficients, denoted rijk = 1 − dijk. For
quantitative variables, the dissimilarity between sites si and sj with respect to the kth
variable is calculated as (Gower, 1971):

dijk =
|xki − xkj|
range(xk)

(11)

were range(xk) is the range of the kth auxiliary variable considering all network sites.
When more than one auxiliary variable is available, it is of interest to summarize

for each pair of sites all the information provided by the different similarity coefficients
calculated for each auxiliary variable. Sometimes the calculations of the similarity measure
between two sites with respect to one auxiliary variable, rijk, is not possible as the result
of missing information. To address this problem, define an indicator variable δijk, as 1,
if the comparison was possible between sites si and sj with respect to the kth auxiliary
variable, and 0 otherwise. Next, define the similarity or resemblance coefficient of si and sj

with respect to the p auxiliary variables as the sum of similarities divided by the number
of auxiliary variables for which there is information available in both sites (Gower, 1971;
Legendre and Legendre, 1983)

rij =
∑p

k=1 δijkrijk∑p
k=1 δijk

for i, j = 1, . . . , n. (12)

Another method to calculate similarity coefficients is based on fuzzy set theory which
was introduced by Zadeh in 1965. This theory addresses the uncertainty that arises when
objects are classified in groups according to observed outcomes of random variables. In
fuzzy set theory, sets have no rigid boundaries, and therefore, elements can be classified
as elements “in some degree” of many sets (Dubois and Prade, 1980).

The calculation of a fuzzy similarity measure requires the researcher to define a priori
fuzzy sets based on the p auxiliary variables. Observe that one auxiliary variable, for
example elevation, may generate two or more fuzzy sets. For example, low elevation,
medium elevation and high elevation are three fuzzy sets that can be defined for elevation.
The number of fuzzy sets depends on the nature of the auxiliary variable.

Each fuzzy set Y is characterized by a continuous function called a membership func-
tion, µY , that takes values on the interval [0,1]. A membership function value of 0 denotes
the element is not a member of the fuzzy set Y , values between 0 and 1 represent some
degree of membership, while a value of 1 implies the element is a member of Y in the same
sense of classic set theory.
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Assume that m fuzzy sets, Y1, . . . , Ym, are generated from the p auxiliary variables.
After the m fuzzy sets and the membership functions are defined, the similarity coefficient
of sites si and sj with respect to the m fuzzy sets is calculated as:

rij = 1 − 1
m

m∑

k=1

dijk (13)

where dijk = |µYk
(si) − µYk

(sj)|, and Y1, . . . , Ym are the m fuzzy sets defined using the p
auxiliary variables.

5 Interpolation

Assume that s∗ is an unsampled site located in the region of interest R and {s1, . . . , sn} are
the network sites. After constructing a similarity matrix for the sites {s∗, s1, . . . , sn} by
using either of the two methods described above, the interpolation weights are calculated
for each site si in the sample and the unobserved site s∗ as the following ratio

w(si, s∗) =
ri,∗∑n
i=1 ri,∗

(14)

where ri,∗ denotes the similarity between the network site si and the unobserved site
s∗. Note that the interpolation weights take values between 0 and 1 and gives more
contribution in the interpolation process to those sites in the sample, more similar to s∗.
Define the interpolated process at the site s∗ and time t, as:

X̃(s∗, t) =
n∑

i=1

X̂ (si, t)w(si, s∗). (15)

where X̂ (si, t) is the predicted design-based EOF model at site si and time t defined
in Equation (8) and w(si, s∗) is the interpolation weight for the network site si and the
unobserved site s∗.

5.1 Description of the data

Accurate long term measurements of dry deposition are difficult and expensive to make
since they require frequent on-site supervision, special instruments and quality technical
resources (Clarke et. al., 1997). For these reasons, inferential models are preferred and
commonly used alternatives to direct measurement. Using data collected from the Clean
Air Status and Trends Network (CASTnet), dry deposition data have been predicted by
the United States (US) Environmental Protection Agency (EPA) using the Big Leaf model
in the past, and currently the Multilayer model. CASTnet, originally called the National
Dry Deposition Network (NDDN), is a monitoring program established in 1986 by EPA
to characterize dry deposition patterns and trends across the United States.

Data used in this illustration consist of weekly atmospheric sulfur dioxide (SO2) dry
deposition calculated using the Multilayer model for CASTnet from 1987 to 1998. Most of
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the sites are located in eastern US and only 9 are located in the western US (Clarke et. al.,
1997). Five auxiliary variables were available: latitude, longitude, elevation (meters), land
use described as agricultural, range, forested and suburban and type of terrain classified
as complex (local ground slopes greater than 15˚), rolling (local ground slopes between
5˚ and 15˚), flat and mountain-top (Clarke et.al., 1997). The data were made available
by Dr. Henry Lee of the Environmental Protection Agency (EPA), Corvallis, Oregon.

5.2 Analysis of the data

CASTnet site locations were not selected using a probabilistic sampling design. Therefore
in order to apply the design-based EOF model, the sites were stratified and a simple
random sample was taken from the fixed number of sites available at each strata. This
approach was used by Muñoz-Hernández et. al. (1999) to illustrate the applicability of
the design-based EOF model to monitoring programs that do not use probability sampling
designs to select the sites. Five strata were constructed using a hierarchical cluster analysis
based on the five variables available. The sizes of the five strata were 11, 9, 4, 11 and 14.

Analysis will be performed using the whole network of sites and separately using only
the sites located in eastern US. A random sample of size about 61% of the total number of
sites considered was drawn using proportional allocation with the objective of obtaining a
representative sample of CASTnet sites. To eliminate any possible spatial trend the time
mean was removed from each network site. These zero mean data were then normalized as
follows: X∗(t, s) = X(t,s)−X(s)

σs
, where the site mean, X(s), and the site standard deviation,

σs, are calculated as: X(s) =
∑

t∈T X(t,s)

N(s) and σs =

√∑
t∈T (X(t,s)−X̄(s))2

N(s) . N(s) is the total

number of time points, for which the observation, X(t, s), is not missing at the site s. The

sample variance-covariance matrix, Ĉ(s, s′) is calculated as: Ĉ(s, s′) =
∑N(s,s′)

t=1 X∗(t,s)X∗(t,s′)
N(s,s′) ,

where N(s, s′) is the total number of observations for which the data points, X∗(t, s) and
X∗(t, s′), are not missing at sites s and s′, respectively. The matrix C is calculated as
specified before and the eigenvector problem in Equation (6) is solved. After determining
K (K ≤ n) non-zero significant eigenvectors, expressions for Zk(t) and the design-based
EOF model predictors are calculated using Equations (7) and (8), respectively.

To implement the interpolation model using auxiliary variables, we calculated the
similarity matrices using Gower and the fuzzy set approaches described in Equations (12)
and (13), respectively. Finally, similarity coefficients were calculated following Equation
(12).

Calculation of a fuzzy similarity matrix requires the definition of fuzzy sets and their
corresponding membership functions. From exploratory analysis, three fuzzy sets were
defined for longitude, latitude and elevation. The variable type of terrain was not con-
sidered in the calculations of the fuzzy similarity matrix based on insufficient information
regarding each of the code definitions. We considered the following continuous member-
ship function for each fuzzy set Y defined for any of the variables latitude, longitude and
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elevation using Bobrowicz et.al. (1990):

µY : R → [0, 1]
s 7→ 1

1+ab(s−c)b

(16)

where a, b and c characterize µY by satisfying the following:

µY (c) = 1
µY (c − 1

a) = µY (c + 1
a ) = 0.5

(17)

and b determines the shape of the function. This membership function was selected based
on the assumption that auxiliary variables range smoothly over the whole region R. Three
fuzzy sets were defined from the information on the auxiliary variable land use. The
membership function for each fuzzy set was defined as a step function that takes values
0.25, 0.5 and 1, depending on the relation among the codes available.

Weights were calculated for both the Gower and fuzzy set approaches using Equation
(14). A sample of sites of about 61% of the two sets of sites considered was selected at
random to fit the design-based EOF model. Interpolation values for the non-selected sites
were obtained at selected time points.

Interpolation results from the design-based EOF model are compared to those obtained
using ordinary kriging. All models were fit using the same samples drawn from the whole
network (49 sites) and from a subset of sites consisting of those sites located in eastern
US (40 sites). Twenty-five time points with no missing data were selected among the 381
available for interpolation purposes. Selection of time points without missing data is a
restriction imposed by the spatial statistics module of Splus.

Kriging is an optimal linear spatial interpolation method very popular in geostatistics.
Kriging is optimal among the linear predictors in the sense that it is unbiased and has
minimum variance for the prediction error. Exploratory data analysis was performed
separately for each of the 25 time points. It was concluded, based on the small sample, that
a spherical variogram captured the broad structure of the observed spatial dependence.
The shape of the variograms appeared to be similar for all considered time points.

For a quantitative measure of the ability of a model to predict in space and time we
considered the following statistic (Wikle and Cressie, 1997).

CR3(s) =

√√√√ 1
N(s)

N(s)∑

i=1

{X(ti, s) − X̃(ti, s)}2 (18)

where X̃(ti, s) is the model predicted value of the process at time ti and site s and N(s)
is the number of time points for which X(ti, s) is not missing. The smaller the values of
the spatial averages of CR3(s), the better the predicted values. CR3(s) is basically an
indicator of the average precision of the model at each site.

Table 1 shows the validation statistic, CR3, for the design-based EOF model obtained
with the three similarity matrices, Gower (EOF G5 and EOF G4) and fuzzy set (EOF
F4), and the ordinary kriging results. EOF G4 denotes the design-based EOF model that
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incorporates only four auxiliary variables: latitude, longitude, elevation and land use by
means of a similarity matrix calculated using Gower’s approach. The fuzzy model inter-
polation results are denoted by EOF F4 and consider the same four auxiliary variables.
By EOF G5 we denote the interpolation results based in Gower’s approach that incor-
porates all five auxiliary variables available. Reduced information regarding the variable
terrain type made impossible the definition of a proper fuzzy similarity measure, and the
comparison between an EOF F5 and a EOF G5 model results. Observe that design-based
EOF (EOF G4, EOF G5 and EOF F4) model approaches performed better than ordinary
kriging (OK). A small difference is observed among the design-based prediction results for
the different choices of similarity matrix. Observe that there was no significant difference
in the performance of the model using the Gower method for the two sets of auxiliary vari-
ables. This suggests that type of terrain has little effect explaining the spatial variability
of the random process of interest.

EOF G51 EOF G42 EOF F42 OK3

Whole data 0.3043 0.3042 0.405 1.272
Eastern data 0.1594 0.1596 0.208 0.942

Table 1: CR3 for the Design-based EOF (EOF G4, EOF G5 and EOF F4) Models and
Ordinary Kriging (OK) Analysis on CASTnet Dry Deposition Data.

A better performance for all four models is observed when considering only the 40
sites in the eastern US. Since the variability among the auxiliary variables is smaller for
this region of the US as compared to the entire data, better results in all these models
are expected if additional information from auxiliary variables considered known to have
influence in dry deposition of SO2 is available (Clarke et. al., 1997; Holland et.al., 1999).

6 Summary

The incorporation of covariates into the design-based EOF model led to good space-time
interpolation results. Small differences were observed in the results obtained by the two
approaches used to develop the similarity matrices. The choice of the similarity matrix
approach to use in the EOF model incorporating covariates would be based on the nature
of the covariates available. If some of the covariates are of a non-precise nature, then the
fuzzy set approach should be considered. The fuzzy set approach requires the specification
of fuzzy sets and membership functions, which depend on the type of available auxiliary
variables. Unfortunately, there is no specific rules for the determination of fuzzy sets and
membership function.

The design-based EOF model can be considered as an alternative for spatial prediction
not only for monitoring programs in environmental science but also for any lattice data
where spatial data analysis is performed.
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