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342 S. DE LOS COBOS

Abstract

In this paper a novel system of convergence (SC) is presented as well
as its fundamentals and computing experience. An implementation using
a novel mono-objetive particle swarm optimization (PSO) algorithm with
three phases (PSO-3P): stabilization, generation with broad-ranging ex-
ploration and generation with in-depth exploration, is presented and tested
in a diverse benchmark problems. Evidence shows that the three-phase
PSO algoritm along with the SC criterion (SC-PSO-3P)can converge to the
global optimum in several difficult test functions for multiobjective opti-
mization problems, constrained optimization problems and unconstrained
optimization problems with 2 until 120,000 variables.

Keywords: particle swarm optimization; unconstrained optimization; constrained
optimization; multiobjective optimization; fuzzy numbers.

Resumen

En este trabajo se presenta un novedoso sistema de convergencia (SC),
sus fundamentos y la experiencia computacional. Se implementó en un
algoritmo PSO monoobjetivo de tres fases (PSO-3P): Estabilización, ge-
neración y búsqueda en amplitud, generación y búsqueda a profundidad,
el cual se probó con diversos problemas benchmark. La evidencia mues-
tra que el algoritmo PSO de 3 fases junto con el criterio SC (SC-PSO-3P)
convergen al óptimo global para diversas funciones consideradas como
difíciles para problemas de optimización multiobjetivo, para problemas de
optimización con restricciones y para problemas de optimización sin res-
tricciones que van desde 2 hasta 120,000 variables.

Palabras clave: optimización por enjambres de partículas; optimización sin res-
tricciones; optimización con restricciones; optimización multiobjetivo.

Mathematics Subject Classification: 90C26, 90C29, 90C59.

1 Introduction

Generally, an optimization problem can be defined as:

min
x∈X

h(x).

There are several heuristic methods to solve optimization problems, but they
have at least one of the following inconveniences:

1. Except under certain conditions, its convergence to global optima is not
guaranteed.
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SC - SYSTEM OF CONVERGENCE: THEORY AND FOUNDATIONS 343

(a) Griewank function ([5] hardness 6.08). (b) Convergence with SC for Griewank
function (dimension=120,000).

Figure 1: Griewank function.

2. They do not have a consistent ability to jump deep valleys using only one
criterion.

3. To date, there is not a general optimization problem solver: multi-objective
problems, mono-objective problems with and without constraints, both
discrete and continuous cases must be solved using different optimization
algorithms.

In recent decades several heuristics in optimization methods have been de-
veloped. These methods are able to find solutions close to the optimum, where
exact or analytical methods cannot produce optimal solutions within reasonable
computation time. This is especially accurate when a global optimum is sur-
rounded by many local optima, a situation known as deep valleys or black holes.
This paper presents a novel approach that guarantees the solution of the above
points using only one algorithm. In practice, it can be observed that the proposed
system of convergence (SC) along with the three-phase PSO algorithm, allows
to escape from suboptimal entrapments in many difficult instances. Moreover,
SC is an alternative to the classical criteria, that allows the use of a weighted
algorithm to find different solutions that those extreme points for non-convex
problems.

In particular, evidence of convergence in Griewank function [5] with 120,000
variables xi ∈ [−600, 600] is presented (see Figure 1a and 1b) using a PSO
based algorithm with only 3 particles can reach global optimum in 90 runs and
40 seconds on average using a Matlab program running on a Notebook with an
Intel Atom N280 processor at 1.66 Ghz.
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344 S. DE LOS COBOS

The work is divided as follows: background on fuzzy numbers is presented in
the second section; in the third section the proposed Convergence System SC, as
well as their definitions and fundamentals are presented. The general guidelines
of novel particle swarm optimization (PSO) with 3 phases is presented in the
fourth section. Numerical examples are presented in the fifth section. Finally,
conclusions and future research are presented in the sixth section.

2 Fuzzy numbers

In this section, we introduce the basic concepts of fuzzy numbers based on [4].
A fuzzy number A = (a, b, c, d;w), where 0 ≤ w ≤ 1, and a, b, c, d ∈ R,

and a ≤ b ≤ c ≤ d , is defined as a fuzzy subset of the real line R with
membership function hA such that:

1. hA is a continuous mapping from R to the closed interval [0, w].

2. hA = 0, ∀x ∈ (−∞, a].

3. hA is a strictly increasing function on [a, b].

4. hA = w, ∀x ∈ [b, c], where w is a constant and 0 ≤ w ≤ 1.

5. hA is strictly decreasing on [c, d].

6. hA = 0, ∀x ∈ [d,+∞).

If w = 1, the generalized fuzzy number A is called a normal trapezoidal
fuzzy number (see Fig. 2) denoted as A = (a, b, c, d). If a = b and c = d, then
A is a crisp interval. If b = c, then A is a generalized triangular fuzzy number.
If a = b = c = d, then A is a real number.

The membership function hA of A can be expressed as:

hA =


hLA(x), a ≤ x ≤ b,
w b ≤ x ≤ c,
hRA(x), c ≤ x ≤ d,
0, otherwise,

where: hLA(x) : [a, b] −→ [0, w] and hRA(x) : [c, d] −→ [0, w] are continuous,
hLA(x) is strictly increasing and hRA(x) strictly decreasing. The inverse func-
tions of hLA(x) and hRA(x) are denoted by gLA(x) and gRA(x), respectively. These
functions are continuous on [0, w], this means both

∫ w
0 gLA(x) and

∫ w
0 gRA(x)

exists [10].
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SC - SYSTEM OF CONVERGENCE: THEORY AND FOUNDATIONS 345

Figure 2: Trapezoidal fuzzy number.

Let be two trapezoidal fuzzy numbers. B̃1 = (a1, b1, c1, d1;w),
B̃2 = (a2, b2, c2, d2;w) and c ∈ R, then:

1. cB̃1 = (ca1, cb1, cc1, cd1;w)

2. B̃1 + B̃2 = (a1 + a2, b1 + b2, c1 + c2, d1 + d2;w)

3 System of convergence SC

This section is based on [2]. Let:

1. 0 ≤ f1, f2, f3 ≤ 1,

2. f1 + f2 + f3 = 1,

3. 0 < w ≤ 1,

4. ai ∈ R, αi ∈ R.

Consider the following class of fuzzy numbers:

C (B̃) = {B̃i = (ai, f1, f2, f3, αi;w)| satisfying the preceding four conditions},

where:

1. bi = ai + f1αi;

2. ci = ai + (f1 + f2)αi;

3. di = ai + (f1 + f2 + f3)αi = ai + αi.
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346 S. DE LOS COBOS

Property 1. For any two fuzzy numbers in B̃1, B̃2 ∈ C (B̃), such that
B̃1 = (a1, f1, f2, f3, α1;w) and B̃2 = (a2, f1, f2, f3, α2;w) and for all c ∈ R,
the following equations are satisfied:

1. cB̃1 = (ca1, f1, f2, f3, cα1;w),

2. B̃1 + B̃2 = (a1 + a2, f1, f2, f3, α1 + α2;w).

Definition 1. Given a function G : C (B̃) −→ R, and B̃1, B̃2 ∈ C (B̃) it is said
that they are SC-equivalent if and only if:

G(B̃1) = G(B̃2).

Definition 2. Given a function G : C (B̃) −→ R, and a gG ∈ R, in the codomain
of G, the following SC-equivalence class is defined B̃gG ⊂ C (B̃) as:

B̃gG =
{
B̃ ∈ C (B̃) | G(B̃) = gG

}
.

Remarks:

1. B̃gG is an equivalence class.

2. B̃g1

∩
B̃g2 = ∅, for all g1 ̸= g2.

3.
∪

g∈R B̃g = C (B̃).

Definition 3. Let f1, f2, f3, w be eral values that satisfy:

1. 0 ≤ f1, f2, f3 ≤ 1,

2. f1 + f2 + f3 = 1,

3. 0 < w ≤ 1;

we define:

1. F1 = (1 + f2),

2. F2 = (2f2
1 + 6f1f2 + 3f2

2 + 3f3 − 2f2
3 ),

3. F3 = (3f3
1 +4f3

2 +3f3
3 +12f1f

2
2 +12f2f

2
1 +6f3−8f2

3 ), it can be proven
that F3 > 0,

4. A = 12
w3(1+3f2)

.
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Theorem 1. Let:
G : C (B̃) −→ R

given by:
G(B̃) = A

[
α2F3 − 4αF2 + 6aF1

]
.

Then G is bijective on each SC-equivalence class.

Proof. G is injective by construction.

G is surjective:
Let g ∈ R, to prove that there is B̃g ⊂ C (B̃) such that:

G(B̃) = g, ∀B̃ ∈ B̃g

it will be proven by construction.
Let B̃g = {B̃ = (a, f1, f2, f3, α;w)} which satisfy the conditions of theo-

rem 1, and let:

α =
2F2

F3
,

a =
4F 2

2 +A−1F3g

6F1F3
.

By definition we have:

G(B̃) = A
[
α2F3 − 4αF2 + 6aF1

]
= A

[(
2F2

F3

)2

F3 − 4
2F2

F3
F2 + 6

4F 2
2 +A−1F3g

6F1F3
F1

]

= A

[
4F 2

2

F3
− 8F 2

2

F3
+

4F 2
2

F3
+A−1g

]
= g.

Therefore, function G is bijective on each class.

Proposition 1. Let B̃ ∈ C (B̃), s, s∗, ϵ ∈ R such that s = s∗ + ϵ, then:

lim
ϵ→0

G(B̃s) = G(B̃s∗).

Proof. Let B̃ ∈ C (B̃) such that B̃ = (a, f1, f2, f3, α;w), and s ∈ R then:

B̃s = (as, f1, f2, f3, αs;w)
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Using the definition of G we have that:

G(B̃s) = A
[
(αs)2F3 − 4(αs)F2 + 6(as)F1

]
= A

[
((α(s∗ + ϵ))2F3 − 4α(s∗ + ϵ)F2 + 6a(s∗ + ϵ)F1

]
= A[(αs∗)2F3 + 2α2s∗ϵF3 + (αϵ)2F3 − 4αs∗F2 − 4αϵF2 +

6as∗F1 + 6aϵF1]

= A[(αs∗)2F3 − 4αs∗F2 + 6as∗F1] +A[2α2s∗ϵF3 + (αϵ)2F3

−4αϵF2 + 6aϵF1].

Therefore:

lim
ϵ→0

G(B̃s) = lim
ϵ→0

A
[
(αs∗)2F3 − 4αs∗F2 + 6as∗F1

]
+ lim

ϵ→0
A
[
2α2s∗ϵF3 + (αϵ)2F3 − 4αϵF2 + 6aϵF1

]
= G(B̃s∗)

Proposition 2. Let B̃i ∈ C (B̃), i = 1 , . . . ,n , and si, ϵi ∈ R such that si =
s∗i + ϵi,
i = 1,2, . . . , n, then:

lim
{ϵi}ni=1→0

G

(
n∑

i=1

B̃isi

)
= G

(
n∑

i=1

B̃is
∗
i

)
Proof. It will be demonstrated by mathematical induction.
i.- First it will be proven for k = 2:

G(B̃1s1 + B̃2s2) = A[(s1α1 + s2α2)
2F3 − 4(s1α1 + s2α2)F2

+6(s1a1 + s2a2)F1]

= A
[
((s∗1α1)

2 + 2s∗1α1s
∗
2α2 + (s∗2α2)

2)F3 +

− 4(s∗1α1 + s∗2α2)F2 + 6(s∗1a1 + s∗2a2)]

= A[(s∗1α1 + s∗2α2)
2F3 − 4(s∗1α1 + s∗2α2)F2 +

6(s∗1a1 + s∗2a2)F1] +A[H(ϵ1, ϵ2)]

where:

H(ϵ1, ϵ2) = (2ϵ1s
∗
1α1 + (ϵ1α1)

2 +

2α1α2(s
∗
1ϵ2 + s∗2ϵ1 + ϵ1ϵ2) + 2ϵ2s

∗
2α2 + (ϵ2α2)

2)F3 +

−4(ϵ1α1 + ϵ2α2)F2 + 6(ϵ1a1 + ϵ2a2)F1.
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Therefore:

lim
{ϵ1,ϵ2}→0

G(B̃1s1 + B̃2s2) = lim
{ϵ1,ϵ2}→0

A[(s∗1α1 + s∗2α2)
2F3 − 4(s∗1α1 + s∗2α2)F2

+6(s∗1a1 + s∗2a2)F1] + lim
{ϵ1,ϵ2}→0

A[H(ϵ1, ϵ2)]

= G(B̃1s
∗
1 + B̃2s

∗
2).

ii.- Using mathematical induction, it is assumed true for k = n− 1 and will
be proven for k = n.

Note that ∀i = 1, 2, . . . , k ≤ n− 1 it is true that:

G

(
k∑

i=1

(B̃isi)
2

)
= G

(
k∑

i=1

(B̃is
∗
i )

2

)
+A

[
H({ϵi}ki=1)

]

such that: lim{ϵi}→0H
(
{ϵi}ki=1

)
= 0.

iii.- For k = n, we have:

Let B̃ =

n∑
i=1

B̃isi, such that B̃i ∈ C (B̃), i = 1, 2, . . . , n.

It can be seen that:

1. B̃ =
∑n

i=1 B̃isi =
∑n−1

i=1 B̃isi + B̃nsn = B̃
′
n−1 + B̃nsn;

2. α =
∑n−1

i=1 (αisi) + αnsn = (α
′
n−1) + αnsn;

3. a =
∑n−1

i=1 (aisi) + ansn = (a
′
n−1) + ansn.
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Therefore:

G

(
n∑

i=1

B̃isi

)
= A

[
(α

′
n−1 + snαn)

2F3 − 4(α
′
n−1 + snαn)F2+

+ 6(a
′
n−1 + snan)F1 +H({ϵi}n−1

i=1 )
]

= A
[
(α

′
n−1 + (s∗n + ϵn)αn)

2F3

−4(α′
n−1 + (s∗n + ϵn)αn)F2 ++ 6(a

′
n−1 + snan)F1

+H({ϵi}n−1
i=1 )

]
= A

[(
(α

′
n−1)

2 + (s∗nαn)
2 + 2α

′
n−1s

∗
nαn

)
F3

−4
(
α

′
n−1 + s∗nαn

)
F2 +

+ 6
(
(a

′
n−1 + s∗nan)F1 +H({ϵi}n−1

i=1

)
+H(ϵn)

]
= A

[(
n∑

i=1

(αis
∗
i )

2

)
F3− 4

(
n∑

i=1

(αis
∗
i )

)
F2+

+6

(
n∑

i=1

ais
∗
i

)
F1 +H({ϵi}n−1

i=1 ) +H(ϵn)

]
.

where: H(ϵn) = ϵn(2s
∗
nα

2
n + 2α

′
n−1αn + α2

nϵn + αnF2 + anF1).
Hence:

lim
{ϵi}ni=1→0

G

(
n∑

i=1

B̃isi

)
= lim
{ϵi}ni=1→0

A

[(
n∑

i=1

(αis
∗
i )

2

)
F3− 4

(
n∑

i=1

(αis
∗
i )

)
F2+

+6

(
n∑

i=1

ais
∗
i

)
F1 +H({ϵi}n−1

i=1 ) +H(ϵn)

]

=G

(
n∑

i=1

B̃is
∗
i

)
.
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Definition 4. Consider the following multiobjective optimization problem h(x),
x ∈ X ⊆ Rn, where:

h(x) = (h1(x), h2(x), . . . , hk(x)); hi : Rn → R, i = 1, 2, . . . , k.

Then:

1. Given y = (y1, y2, . . . , yk) is said that it dominates z = (z1, z2, . . . , zk) if
and only if ∀i ∈ {1, 2, . . . , k} yi ≤ zi and ∃i0 ∈ {1, 2, . . . , k} such that
yi0 < zi0 .

2. Pareto Frontier, (PF) = { h(x)| are non dominated.}

3. A solution vector x∗ is said to be Pareto Optimal if there is no other vector
x such that h(x) dominates h(x∗).

Definition 5. The SC-Frontier (SC-F) is defined as:

SC-F = {h(x)|∀ϵ > 0∃y ∈ Codomain(h)−Image(h) such that ||y−h(x)|| < ϵ}.

Proposition 3. PF ⊆ SC-F.

Proof. The proof will be done by contradiction: Suppose:

1. y∗ = (y∗1, y
∗
2, . . . , y

∗
k) ∈ PF;

2. y∗ /∈ SC-F.

Then we have:

1. y∗ ∈ Image(h), and y∗ is non dominated.

2. ∃ ϵ > 0, such that if ||y∗ − y|| ≤ ϵ⇒ y ∈ Image(h).

Consider a point: y0 = (y∗1 − ϵ√
k
, y∗2 − ϵ√

k
, . . . , y∗k −

ϵ√
k
). Note that:

||y∗ − y0|| =
√

(
ϵ√
k
)2 + . . .+ (

ϵ√
k
)2 = ϵ,

for that reason y0 ∈ Image(h) and y0 dominates y∗, which is a contradiction,
therefore: PF ⊆ SC-F.
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352 S. DE LOS COBOS

Definition 6. Criterion SC: Given a multiobjective optimization problem h(x),
x ∈ X ⊆ Rn, where:

h(x) = (h1(x), h2(x), . . . , hk(x)); hi : Rn → R, i = 1, 2, . . . , k,

and
B̃ =

(
B̃1, B̃2, . . . , B̃k

)
,

where B̃i ∈ C (B̃), i = 1, . . . , k.
Define:

G
(
B̃h(x)

)
= G

(
k∑

i=1

B̃ihi(x)

)
.

Definition 7. Given a multiobjective optimization problem and a B̃, define:

x∗
B̃
= argmin {G(B̃h(x)) | h(x) ∈ SC-F}.

Definition 8. The optimal set of SC solutions is defined as:

SC-O = {x∗
B̃
, B̃ ∈ C (B̃)}.

3.1 Empirical boundary conditions

Given an optimization problem with k objective functions, the following values
have been used empirically:

1. f1 = f3 = 0.25, f2 = 0.5, w = 1,

2. αi ∈ [−12K1, 12K1], i = 1, 2, . . . , k,

3. ai = K2 +K3gi,

where: K1 =
2F2
F3

, K2 =
2F2
3kF1

, K3 =
A−1F3
6kF1

, gi =


1 if hi(x

∗) > 0
0 if hi(x

∗) = 0
−1 if hi(x

∗) < 0.

3.2 SC algorithm

The main idea is to use a kind of fitness function instead of the original objective
function, this fitness function is obtained through defuzzification (transformation
by a set of trapezoidal fuzzy numbers). This defuzzification (SC criterion) has
interesting properties, among which are the quadratic topology (see definition for
G in Theorem 1) and its convergence to the same point as the original function
(see Propositions 1 and 2).
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SC - SYSTEM OF CONVERGENCE: THEORY AND FOUNDATIONS 353

Step 0:

1. Provide stopping criteria.

2. Set f1, f2, f3, w such that they satisfy the conditions of Theorem 1.

3. Given the function to optimize h = (h1, h2, . . . hk), find the boundary
conditions (or use the suggested empirical conditions), take B̃i ∈ C (B̃), i =
1,2,. . . , k.

4. Set values for ai and αi.

5. Take any value x in the domain of h and evaluate:

G
(
B̃h(x)

)
= G

(
k∑

i=1

B̃ihi(x)

)
.

Set:
gG(x)← G

(
B̃h(x)

)
.

Step 1: Through m neighborhoods, find xj ∈ Phasej(x) and evaluate

G
(
B̃h(xj)

)
, j = 1, 2, . . . ,m

gG(x1) = min
j
{G(B̃h(xj)), G(B̃h(x))},

x← x1.

Step 2: Stop in the following conditions:

1. if for a certain number of iterations gG(x1) = gG(x), then it is considered
that an optimum has been reached,

2. a stop criterion was met.

In any other case go to Step 1.

Remark: When gG is very close to zero, it can be used, for example: (1− gG)
2.

4 Particle swarm optimization

The particle swarm optimization (PSO) [8] is a subset of what is known as swarm
intelligence and has its roots in artificial life, social psychology, engineering
and computer science. PSO is based on the use of a set of particles or agents
that correspond to states of an optimization problem, where each particle moves
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354 S. DE LOS COBOS

across the solution space in search of an optimal position or at least a good
solution. In PSO the agents communicate with each other, and the agent with
a better position (measured according to an objective function) influences the
others by attracting them to it.

The population is started by assigning an initial random position and ve-
locity for each element. At each iteration, the velocity of each particle is ran-
domly accelerated towards its best position (where the value of the fitness func-
tion or objective function improves) and also considering the best positions of
their neighbors.

To solve a problem, PSO uses a dynamic management of particles; this ap-
proach allows breaking cycles and diversifying the search. In this work, a r-
particle swarm is represented at time t under the form:

θ1,t, θ2,t, . . . , θr,t

with θj,t in a domain, j = 1, 2, . . . , r, then a movement of the swarm is defined
according to equation (1):

θj,t+1 = θj,t + Vj,t+1, (1)

where the velocity Vj,t+1 is given in equation (2):

Vj,t+1 = αVj,t + rand(0, φ1)[θ
′
j,t − θj,t] + rand(0, φ2)[θ

′
g,t − θj,t], (2)

where:

D: space of feasible solutions,

Vj,t: speed at time t of the j-th particle,

Vj,t+1: speed at time t+ 1 of the j-th particle,

θj,t: j-th particle at time t,

θ′g,t: the particle with the best value for all time t,

θ′j,t: j-th particle with the best value to the time t,

rand(0,φ): random value uniformly distributed on the interval [0,φ],

α: parameter of scale.

The PSO algorithm is described in Table 1.
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Table 1: PSO algorithm.

1. Create a population of particles distributed in the feasible space.

2. Evaluate each position of the particles according to the objective function
(fitness function).

3. If the current position of a particle is better than the previous update it.

4. Determine the best particle (according to the best previous positions).

5. Update the particle velocities j = 1, 2, . . . , r according to: Vj,t+1 =
αVj,t + rand(0, φ1)[θ

′
j,t − θj,t] + rand(0, φ2)[θ

′
g,t − θj,t].

6. Move the particles to new positions according to: θj,t+1 = θj,t + Vj,t+1.

7. Go to Step 2 until the termination criterion is satisfied.

4.1 SC-PSO-3P

The three-phase PSO algorithm (PSO-3P) along with the SC criterion is named
SC-PSO-3P. The SC-PSO-3P algorithm is described in Table 2.

As can be seen in the algorithm in table 2, the key modification is to consider
the G function given in Theorem 1, the SC criterion, and the 3 phases, the rest
of the algorithm remains the similar.

However, the position of the particles can be modified using different strate-
gies, which are sequentially applied in three phases of the searching process.

In phase 1, called stabilization, according to the description presented in sec-
tion 4, the PSO-3P algorithm generates randomly a set of particles in the solution
space. Then, during itF1 iterations the position of the particles is modified using
equations (1) and (2). Thus, at the end of this phase the particles are concen-
trated, or stabilized, in a promising region.

When phase 1 is completed, a breadth-first search strategy, called phase 2, is
incorporated. In this phase, if the global best solution is not improved after three
consecutive iterations, the position of M2 particles is modified randomly. How-
ever, the particle with the best known position is preserved. Thus, the population
is dispersed in the solution space, but it can be attracted to the best region visited
so far. This diversification strategy is considered during itF2 iterations.

Finally, phase 3 is initialized. During itF3 iterations the following depth-first
search strategy is applied. If the global best solution is not improved after three
consecutive iterations, M3 particles are randomly positioned in a neighborhood
of the best known solution. Thus, phase 3 includes an intensification process in
a promising region.
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Table 2: SC-PSO algorithm.

1. Set variables c, itF1, itF2, itF3, MaxIt and prop.

2. Create a population of nPop particles distributed in the feasible space.

3. Set cont=0 and it=1. Evaluate each position of the particles according to the
function given in Definition 6 (fitness function).

4. If the current position of a particle is better (with respect to SC) than the previ-
ous update it.

5. Determine the best particle (according to the best previous positions against the
criterion SC). If a better particle cannot be found, let cont=cont+1.

6. Update the particle velocities j = 1, 2, . . . , nPop according to:
Vj,t+1 = αVj,t + rand(0, φ1)[θ

′
j,t − θj,t] + rand(0, φ2)[θ

′
g,t − θj,t].

7. Move the particles to new positions according to: θj,t+1 = θj,t + Vj,t+1.

8. (Phase 1: Stabilization)

if it ≤ itF1: go to Step 11.

9. (Phase 2: Generation with broad-range exploration).

if itF1 < it ≤ itF2

If cont=c
Set n=1. While n ≤ nPop*prop

Create a random particle and, with a probability bigger than
0.5 a 0.5 substitute randomly a particle in the swarm.
Set n=n+1.

Set cont=0.

go to Step 11.

10. (Phase 3: Generation with in-depth exploration).

if itF2 < it ≤ itF3

If cont=c
Set n=1. While n ≤ nPop*prop

Create a random particle in a variable neighborhood of θ′g,t
and substitute randomly a particle in the swarm.
Set n=n+1.

Set cont=0.

go to Step 11.

11. Select the best nPop particles according to SC criterion.

12. Set it=it+1. Go to Step 3 until the termination criterion is satisfied.
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Any version of standard PSO can be used, per example in order to be recre-
ated by anyone interested, a version of PSO found in [7] was taken, which, al-
though multiobjective, was implemented and modified, making it mono-objective
using the SC criterion and 3 phases neighborhoods to solve all the reported prob-
lems. Additional modifications to the code are listed below:

1. Set the number of particles in the repository (nRep) to 1.

2. Store the solution that improves according to the SC criterion.

3. In the cleaning routine the worst solutions regarding SC are removed.

4. Implement the Phase 2: generation with broad-ranging exploration.

5. Implement the Phase 3: generation with in-depth exploration.

5 Computational results

The algorithm was implemented in Matlab R2008a and was run in an Intel Core
i5-3210M processor computer at 2.5 GHz, running on Windows 8.

In this work, a novel criterion called System of Convergence (SC) is pro-
posed, which was implemented using a novel neighborhood search, PSO-based
algorithm with three phases: stabilization, generation with broad-ranging explo-
ration and generation with in-depth exploration.

In this paper, the functions for unconstrained optimization were taken from
[6], [12] and [5]. For continuous optimization without constraints the graphs
were taken from [5]. For multi-objective optimization references [13], [3] and
[1] were used. Finally, restricted optimization functions were taken from [9].

5.1 Unconstrained optimization

In this section, the efficiency was defined as:

efficiency =


1− abs(h(x)−h(x∗)

h(x∗) ) if h(x∗) ̸= 0

1− abs(h(x)) if h(x∗) = 0.

When the efficiency was greater than .999999, it is rounded to 1.
Reference [5] is quoted verbatim: “It can be easily seen that the DeVilliers-

Glasser02, Damavandi and CrossLegTable were always hard problems for all the
algorithms (see table 3).” It can be remarked that the success rate is very high
when SC is used.
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Table 3 shows the percentage of success for some difficult problems pre-
sented in [5].

At Table 4 results when using 3 particles (Part) to at least one success in
24 runs of 500 iterations each are presented. The average time (time (sec)) in
seconds per run, the percentage of success (Perc) and the average number of
iterations per run (Mean Iter) are displayed in subsequent columns.

Benchmark test functions (hardness)
Optimization Method N Overall Success (%)
DeVilliersGlasser02 5 0
Damavandi 2 0.25
CrossLegTable 2 0.83
XinSheYang03 2 1.08
Griewank 2 6.08
XinSheYang02 2 31.33

Table 3: Hardness according to [5].

Function(dim) [[5]] Figure Part. time (sec) Perc. Mean Iter
Cross Leg table(2) [0.83] 3b 3 0.8 75.0 223.6
Devillier Glasser 02(5) [0.00] - 3 0.6 100.0 151.9
Griewank(2) [6.08] 1a 3 0.7 100.0 209.5
Griewank(120000) 1b 3 3.5 100.0 87.4
Xin She Yang02(2) [31.33] 3c 3 0.6 95.8 170.1
Xin She Yang03(2) [1.08] 3d 3 0.5 100.0 155.3

Table 4: Results with 3 particles, 500 iterations per run.

Function(dim.) [hardness] Figure Part. Mean Eff time (sec) Mean Iter
Cross Leg table(2) [0.83] 3b 60 0.833426 8.07 198.42
Damavandi(2) [0.25] 3a 60 0.989719 12.42 490.25
Devillier Glasser 02(5) [0.00] - 12 1.000000 2.60 499.00
Griewank(2) [6.08] 1a 24 1.000000 1.53 191.04
Griewank(120000) 1b 12 1.000000 13.79 87.00
Xin She Yang02(2) [31.33] 3c 48 1.000000 4.83 148.83
Xin She Yang03(2) [1.08] 3d 3 1.000000 0.55 160.33

Table 5: Time and efficiency table.
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(a) Damavandi function (0.25*).

(b) CrossLegTable function (0.83*).

(c) XinSheYang03 function (1.08*).

(d) XinSheYang02 function (31.33*).

Figure 3: Different Functions and its *hardness [5].
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In Table 5 are presented, for each function, the number of particles (Part), the
average efficiency (Mean Eff), the average time per run in seconds (time (sec))
and the average number of iterations per run (Mean It), all data considers 24 runs
and 500 as maximum of iterations.

5.2 Multiobjetive optimization

5.2.1 ZDT test functions [13]

Each of the test functions defined below is structured in the same manner and
consists itself of three functions f1, g, h:

Minimize T (X) = (f1(x1), f2(X))
subject to f2(X) = g(x2, x3, . . . , xm)h(f1(x1), g(x1, x2, . . . , xm)),

where X = (x1, x2, . . . , xm).

The test function ZDT6 includes two difficulties caused by the nonunifor-
mity of the search space: first, the Pareto-optimal solutions are nonuniformily
distributed along the global Pareto front (the front is biased for solutions for
which f1(x) is near one); second, the density of the solutions is lower near the
Pareto-optimal front and bigger further from the front:

lf1 = 1− exp(−4x1) sin6(6πx1)

g(x2, . . . , xm) = 1 + 9(

m∑
i=2

x2i
(m− 1)

)0.25

h(f1, g) = 1− (
f1
g
)2

where m = 10 and xi ∈ [0, 1]. The global Pareto-optimal front is formed with
g(X) = 1 and is nonconvex.

For ZDT6 problems (see Figure 4), efficiency was defined as:

efficiency = 1−
m∑
i=2

x2i .

Function(dim) Part. Mean It. Perc. Time (sec)
ZDT6(10) 3 357.1 73 1.2

Table 6: Results with 3 particles and 100 runs.

Rev.Mate.Teor.Aplic. (ISSN 1409-2433) Vol. 22(2): 341–367, July 2015



SC - SYSTEM OF CONVERGENCE: THEORY AND FOUNDATIONS 361

(a) 100 SC points for ZDT6(10).

(b) Convergence of ZDT6(120,000).

Figure 4: Function ZDT6.

Rev.Mate.Teor.Aplic. (ISSN 1409-2433) Vol. 22(2): 341–367, July 2015



362 S. DE LOS COBOS

The points found on the Pareto frontier for ZDT6 of dimension 10, are pre-
sented in Figure 4a, in Figure 4b is presented the convergence of a random run
for ZDT6 of dimension 120,000.

In Table 6 the results of 100 runs using 3 particles, are presented with a
maximum of 500 iterations each. The number of times the optimum was reached
(Perc), the average iterations per run (Mean It) as well as the average time per
run (Time (sec)) are also presented.

In Table 7 the average time per run (Time (sec)) given in seconds, the average
efficiency obtained and the number of runs in which the optimal (Perc / Runs)
was reached for ZDT6 problems, 100 runs were performed.

Function(dim) Time(sec) Mean Eff. Mean It Per/Runs
ZDT6(10) 4.15 1.00000000 105.88 100/100

Table 7: Efficiency with 120 particles and 500 iterations.

In Table 8 the average time per run (Time (sec)) given in seconds, the number
of runs that reach the optimum (Perc / runs) and the average number of iterations
(Mean It) to reach the optimum are presented. 120 particles and a maximum of
1000 iterations per run was used.

Function(dim) Time(sec) Per/runs Mean It.
ZDT6(120,000) 290.22 17/24 524.88

Table 8: Results Table using SC-PSO-3P (120,000 variables).

5.2.2 DTLZ test problems

In DTLZ problems [3], the total number of variables is n = M + k − 1, where
M is the number of objectives and k is the number of variables of the functional
g. All of them are minimization problems.
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The DTLZ1 problem is defined as:

f1 =
1

2
(1 + g)

M−1∏
i=1

xi

fm=2:M−1 =
1

2
(1 + g)

M−m∏
i=1

xi(1− xM−m+1)

fM =
1

2
(1 + g)(1− x1)

g = 100

[
k +

k∑
i=1

((zi − 0.5)2 − cos(20π(zi − 0.5)))

]
.

For DTLZ1, the Pareto-optimal solutions correspond to x∗i = 0.5, xi ∈ Xk

and the objective function values lie on the linear hyperplane:
∑M

m=1 f
∗
m = 0.5.

The search space contains (11k − 1) local Pareto-optimal fronts. Efficiency is
measured as:

Efficiency = 1− abs

(
0.5−

∑M
m=1 fm

0.5

)
and distance as:

distance =
∑

xi∈Xk

(0.5− xi)
2.

For the function DTLZ1(5.15), in 23 out of 24 runs the Pareto Optimal Fron-
tier was reached, but the run where optimum was not reached, the solution was
far from it, for this reason the percentage of efficiency and the distances to the
points was greatly affected.

Stop criteria were (number of iterations) or (distance < 10−12 and
efficiency > 0.99999).

In Table 9 the second column shows the average time per run (Time) in sec-
onds, third column shows the average iterations (Mean It) per run. Last column
shows the percentage by which the optimum was reached in 24 runs, using only
three particles a maximum of 1500 iterations per run.

In Table 10 the second column shows the average time per run (Time) in
seconds, third column shows the number of particles used (Part), fourth column
shows the maximum number of iterations, fifth and sixth columns show the aver-
age iterations (Mean It) per run and the average efficiency (Mean Eff). Last two
columns show the average distance (Mean Dist) and the percentage by which the
optimum was reached in 24 runs.
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Function (M,n) Time (sec) Mean It. Perc.
DTLZ1(3,8) 0.88 194.67 95.83%
DTLZ1(5,15) 0.75 167.46 100.00%
DTLZ1(50,100) 4.89 1031.50 37.50%
DTLZ1(100,175) 7.93 1438.96 4.17%

Table 9: Percentage with three particles, 1500 iterations and 24 runs.

Function(M,n) Time Part Iter Mean It Mean Eff. Mean Dist. Per/runs
DTLZ1(3,8) 22.83 120 500 168.33 0.9583544 4.16E-04 95.83%
DTLZ1(5,15) 22.33 120 500 170.58 0.2048734 6.29E-03 95.83%
DTLZ1(50,100) 41.33 120 1500 417.13 1.0000000 4.03E-02 91.67%
DTLZ1(100,175) 128.32 120 1500 1500.00 1.0000000 7.27E+00 0.00%

Table 10: Results using SC-PSO-3P.

5.3 Constrained optimization

In this section we consider the global optimization problem with restrictions:

Minimize: h(x)
subject to: fi(x) ≤ 0 i = 1, 2, . . . ,m

tj(x) = 0 j = 1, 2, . . . , k
x ∈ S = [L,U ],

(3)

where:

• [L,U ] = {x = (x1, x2, . . . , xn)|li ≤ xi ≤ ui} ⊂ Rn,

• the feasible region (D) is defined as:

D = {x ∈ S, fi(x) ≤ 0, i = 1, 2, . . . ,m, tj(x) = 0, j = 1, 2, . . . , k}.

The problem given in (3) can be transformed into the problem (4) given by:

Minimizex∈D : F (x) = (h1(x), h2(x), h3(x))
where: h1(x) = h(x)

h2(x) = P1
∑m

i=1
ci(x)
c(x)+ϵ

h3(x) = P2
∑k

j=1 dj

(4)
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and:

• ci(x) = max{0, fi(x)}, i = 1, 2, . . . ,m.

• c(x) = maxi=1,2,...,m{ci(x)}.

• dj(x) = max{0, |tj(x)| − δ}.j = 1, 2, . . . , k.

• ϵ, δ > 0, Pi ≫ 0, i = 1, 2.

Problem(dim) Mean Time Max Eff. Mean Eff.
G3(12) 32.45 0.999982 0.995865
G5(4) 32.03 0.999971 0.989064

Table 11: Results with 120 particles, 500 iterations and 24 runs.

Table 11 shows the average time (Mean Time) given in seconds per run, the
maximum efficiency obtained (Eff Max) and the average efficiency (Mean Eff)
in 24 runs using 120 particles and 500 iterations per run.

Function(n) Type of h Ratio* ρ %
G3(12) Polynomial 0.0000
G5(4) Cubic 0.0000

Table 12: Summary ([11]), ∗ρ = number of solution∈D

number of solution∈S
.

Table 12 shows the ratio ρ for problems G3 and G5 . [11] presents a summary
of some characteristics of these problems.

In Table 13 information on the average time as per run in seconds (Time) and
the maximum efficiency (Max Eff ) obtained in 24 runs using 3 particles and 500
iterations per run is presented.

Problem Time(sec) Max Eff.
G3 2.22 0.995847429
G5 2.43 0.997725422

Table 13: Maximum efficiency achieved with 3 particles and 500 iterations, for 24 runs.
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6 Conclusions and further research

In this work, a novel criterion called System of Convergence (SC) is proposed,
which was implemented using a novel PSO based algorithm with three phases:
stabilization, generation with broad-ranging exploration and generation with in-
depth exploration. This algorithm was tested in a set of benchmark instances,
monoobjective as well as multiobjective, with and without restrictions. The em-
pirical evidence shows that SC-PSO-3P is very efficient in both small and big
instances. In very big instances we are reporting results never found before in
the literature.

As an important remark, a deeper study concerning the boundary conditions
of the parameters a and α of SC, as well as their implementation with an algo-
rithm different from PSO must be performed.

It is also necessary to conduct a further study about the topology generated
by SC. It was observed that in all the cases studied, SC can reach the global
optimum or being very close to it with shorter iteration times and less iterations,
as well as the ability to jump deep valleys. Worth mentioning that in a later work
a more extensive study will be conducted for each types of optimization models.
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