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Abstract

As opposed to standard methods of association which rely on
measures of central dispersion, entropic measures quantify multi-
valued relations. This distinction is especially important when high
fidelity models of the sensed phenomena do not exist. The properties
of entropic measures are shown to fit within the Bayesian framework
of hierarchical sensor fusion. A method of estimating probabilistic
structure for categorical and continuous valued measurements that
is unbiased for finite data collections is presented. Additionally, a
branch and bound method for optimal sensor suite selection suit-
able for either target refinement or anomaly detection is described.
Finally, the methodology is applied against a known data set used
in a standard data mining competition that features both sparse
categorical and continuous valued descriptors of a target. Excellent
quantitative and computational results against this data set sup-
port the conclusion that the proposed methodology is promising for
general purpose low level data fusion.

Keywords: Information theory; data association; fusion; estimation; en-
tropy.

Resumen

Contrario a los métodos estándar de asociación que ligan medidas
de dispersión central, las medidas de entroṕıa cuantifican relaciones
multivaluadas. Esta distinción es especialmente importante cuando
no existen modelos de alta fidelidad de los fenómenos detectados. Se
muesrta que las propiedades de las medidas de entroṕıa calzan en la
marco Bayesiano de sensores jerárquicos de fusión. Se presenta un
método de estimación de la estructura probabiĺıstica para medidas
categóricas y continuas, el cual es insesgado para colecciones finitas
de datos. Adicionalmente, se describe un método de ramificación
y acotamiento de selección óptima del sensor apropiado tanto para
refinamiento del objetivo como para detección de anomaĺıas. Final-
mente, la metodoloǵıa es aplicada sobre un conjunto conocido de
datos usados en una competencia est[andar de mineŕıa de datos, que
caracteriza tanto descriptores ralos categóricos como continuos de un
objetivo. Excelentes resultados cuantitativos y computacionales con
estos datos apoyan la conclusión de que la metodoloǵıa propuesta
es promisoria para propósitos generales con datos bajos niveles de
fusión.

Palabras clave: Teoŕıa de la información; datos de asociación; fusión;
estimación; entroṕıa.

Mathematics Subject Classification: 94A17.
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1 Introduction

A method is proposed of low-level synchronous data fusion capable of op-
erating on mixed type measured data so that the information content of
each measurement from each data source can be objectively quantified rel-
ative to a distribution of measurements of a target phenomenon. Fusion
is the attempt to answer a human-centric question from multiple sources
of data. The closest analogue to fusion is system identification. However,
unlike system identification, fusion is not strictly a method for determin-
ing characteristics in the associations of data. Often there is no known
system to characterize, but simply a stream of data that might or might
not be relevant to a question at hand. For example, fusion for anomaly de-
tection combines aspects of system identification, e.g. “What is normal?”
with aspects of data mining, e.g. “How is this data self-consistent?” and
the human-centric question, “What is abnormal?” Within the context of
fusion, questions can be very specific, e.g. “Is an underground weapons
production facility at this location?” or ill-posed so that fused information
serves only to guide the questioner between what is presently knowable
and unknowable. If the question is well-posed, fusion should also quantify
the confidence of the answer.

There are two areas in which the knowledge-generation process is bot-
tlenecked by technological shortcomings. One is in the vertical generation
of knowledge from sensed measurements. The other is in the horizon-
tal synthesis of data and information between machines and data stores.
Taken as a whole, this semi-automated process of creating knowledge from
sensors and data stores is called information fusion. When referring par-
ticularly to sensed data, it is called sensor fusion and when referring only
to the generation of knowledge from data stores, it is called data fusion.
The methodology introduced is in the context of operations on data stores
but may be expanded towards the near real time processing of streaming
data using conventional reservoir sampling techniques.

The questions answered by information fusion are application depen-
dent. However, by the Data Processing Inequality (DPI) which states
that data processing cannot increase the information in the data relevant
to its source, the quality of answers and associated uncertainty are best
when the fusion process itself is application independent. Therefore, the
information-theoretic principal underlying an ideal fusion methodology
application is that it should incorporate as much relevant information as
possible while systematically distilling that information towards the an-
swer of the most important potential questions. If the potential questions
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are not know a priori, the fusion process should be constrained only as
much as the application itself. As it may be guessed, the systemization
of information fusion is still an open question to various degrees depen-
dent on the application, potential questions, point to which the data is
processed, and the particular definition of “information”.

Data fusion differs from data mining primarily in the respect that there
is a causal or contemporaneous relation in the descriptors of the data fu-
sion process to the targeted phenomena. The present interest in fusion
as a specialty distinct from data mining and system identification is owed
primarily to the fact that there is a core constituency within the military
remote sensing community working to automate information processing.
The focus of the development of fusion as a special area of study has been
heavily influenced by target tracking (e.g. [1-2]) and hierarchal methods
to aid command and control (e.g. [3-7]). Target tracking estimates the
geospatial position of entities over time. Additional information may then
be associated with the entity estimates from which the identity of the en-
tities and an estimate of the situation may be inferred. This conventional
method of fusion relies on the detection and modeling of an entity in a
sequential and potentially suboptimal association of data to a target or
situation estimate. Note that the composition of functional estimates may
be multi-valued so that function approximation methods of data mining
(e.g. [8]) may be overly restrictive.

Data fusion presumes the existence of a common frame of reference
for data aggregation. If we consider the sensed phenomenon to be a Rie-
mannian manifold, then the frame of reference is topologically equivalent
to a hypercube with dimensions corresponding to distinct data descrip-
tors possibly over a common geospatial basis (Fig. 1). If the dimensions
corresponding to a certain data descriptor are projected to the real line,
it is possible that a one-one relation may not exist between the embedded
manifold and its projection, i.e. there may not be a functional relation-
ship between measurements of the phenomenon and the coordinates of
the hypercube. For this reason inter-dimensional data association statis-
tics derived from measures of central tendency are not always sufficient
to quantify entity-related information in the measured probability space.
However, entropic measures do quantify multi-valued relationships and
when estimated as proposed here, also allow entropy estimates to be iden-
tified with information.

Fusion is essentially a problem in data compression where measure-
ments are synthesized into information useful to a decision maker. Most
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Figure 1: Initial levels of a sensor fusion architecture.

military fusion applications are formulated in terms of distances in time
and space. Measurements of physical phenomenon such as imagery may
be fused with non-physical data such as entity-type labels. This fused
information may be then combined with side information such as known
geographical features to yield a composite picture of a situation or event
in a certain geographical region during a certain time period. Side infor-
mation enters into the fusion process either as needed for the evaluation
of a hypothesis or as might be necessary to elucidate features of the com-
pressed data. For example, if the decision maker is concerned with the
flow of materials across a geographical region, a map of the roads and wa-
terways can be fused with the geospatial basis as side information. Addi-
tionally, if fusion resolves the data into a class of entities, side information
relevant to the discrimination of class member may be incorporated. For
example, if an entity is classified as a truck and the color of the truck is
measured, the make and model of the truck by color is side information
that may increase the confidence in the classification or, alternatively, to
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further refine the classification by make and model. Side information is
that information which is selectively applied a posteriori dependent on
the hypothesis or the evolving information from the data fusion process.
The process must be such that it presents an interface that admits the
incorporation of side information dependent only on a priori knowledge of
the data and the scope of knowledge discovery. Sequential, suboptimal,
modeling fusion architectures do not generally admit a generic interface
for side information incorporation.

In military parlance, the factors of consideration in the assessment
of sources of measured data are redundancy and mix. Redundancy is
the ensemble averaging of measurements within a common measurement
space. By the central limit theorem, if the measurements are independent
and identically distributed (iid) in a probability space, the estimate of
the phenomenon should increase in confidence as a Gaussian distribution
with decreasing variance. Redundancy in iid samples may be achieved
with multiple measurements from one source over time during which the
phenomenon is statistically stationary or by synchronous measurements of
multiple independent data sources. Mix is the association of measurements
between data dimensions. For example, an event can be measured in the
blue or yellow visible light spectral dimensions of a multi-sepectral imaging
sensor and those measurements associated with a common event through
registration of the event measurements in a common geographical basis.
The mix of the blue or yellow dimensions might then be associated as
independent views of the green fused entity shown in Fig. 1. Mix is the
property of the data fusion architecture of the strength of associations of
data among independent dimensions.

Fusion, like mathematics, is founded in set theory. Also, like math-
ematics, we seek to unify and systematize the analysis. To this end we
view dimensions as a set that dictate a relation among its members. Inde-
pendent elements of a set are understood to exist in separate dimensions
until a probabilistic relation is shown to exist between them. Probability
is a method of associating beliefs with estimates (i.e. a method of making
associations) while logic is a system of operating on sets with relations of
probability one. Fusion then is nothing more than a hierarchy of proba-
bilistic data association in which dimensionality is systematically reduced
by projections and transformations as the probabilistic structure in the
data is discovered. Mix is the process of making associations between
dimensions while redundancy is a process in which associations are made
within dimensions.
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Interest in information-theoretic techniques of fusion has markedly in-
creased over the past several years. Hero et al. [9] use Fisher’s informa-
tion measure as an optimization criterion for the scheduling of sensors in
a sensor management algorithm. Hero notes that since the information-
theoretic measures are model-independent and otherwise general, they de-
couple the risk\reward optimization from the collection task in the sensor
management algorithm design. Hero cautions that the use of Fisher in-
formation is only justifiable when the underlying posterior distribution is
smooth. Varshney [10] similarly advocates information-theoretic measures
as general cost functions for sensor management algorithms. Varshney
frames the problem of distributed sensor detection as a communication
channel between sensor readings and the binary detection condition. The
objective function is expressed as the Shannon’s mutual information of
the channel. Mahler [11] mentions central entropy and cross-entropy as
a measure of statistical dispersion, but relies primarily on models for a
radar-centric sensor fusion strategy of developing hard and soft mixture
model clusters. Hard clusters are separable whereas soft clusters are not.
On the other hand, Schuck et al. [12] go beyond the problem of detecting
and locating the existence of a target and concentrate on its identification.
In this context, a single sensor such as radar may be used to measure si-
multaneously several independent attributes of a target. Schuck therefore
relies to a greater extent than Mahler in the use of information-theoretic
measures for hypothesis discrimination since the identification problem
is not only soft, but also multi-relational. However, it should be noted
that Schuck limits himself to one-dimensional entropy measurements and
considers the contributions of independent data descriptors only after the
assignment of targets probabilities are made based on that single data
descriptor alone. Thus, Schuck does not fuse measurements, but rather
fuses hypotheses using information-theoretic measures.

The methodology for low level sensor fusion presented in this paper is
fundamentally distinct from the aforementioned works in that estimates
of entropic measures are formed directly from measurements rather than
through a priori probability distributions or models of processes. The
wider scope of the methodology necessitates the solution of several unique
problems. First, the selection of the measure of information must be
shown to be appropriate to the problem. We show by first principles that
Shannon’s mutual information is theoretically sufficient and computation-
ally practical to adopt as the measure of multi-valued dependence for data
associations. Second, the estimation of the measure must be unambigu-
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ous. Here we advance the state-of-the-art by giving in closed form an
evaluation of the maximal entropic estimate from any size data set on a
uniform partition from which knowledge of the optimal informational con-
tent of a data descriptor can be assessed. Third, we provide a tractable
method of selecting an informational-optimal set of data descriptors to
support the construction of a fused model for a statistically quantifiable
target signature. Since data fusion is essentially the same as a large class
of data mining problems, the proposed methodology should be useful in
fields apart from fusion.

This paper is organized as follows: A brief background is given on
information-theoretic measure estimation in Section 2. In the absence of
a priori information, estimates of the measures are calculated over uniform
partitions of the measurement space. However, since the bias of the mea-
sures is dependent on the distribution of the data descriptors as well as
the partition cardinality, Section 3 presents a method for determining the
information-optimal partition for a particular data descriptor dimension.
In Section 4, a branch and bound algorithm for the selection of mutual
information-optimal data descriptors is presented. Due to the fact that
most all data fusion strategies are suboptimal and model-dependent, it is
very difficult to directly assess the relative merits of one methodology in
comparison to others. Therefore, in Section 5 the proposed methodology
is applied to a competition data mining problem that serves as an ana-
logue to the general data fusion problem of descriptor selection for target
identification. We conclude with a brief summary.

2 Entropic measures

The purpose of this section is to make an argument from first princi-
ples for the adoption of Shannon’s entropy and mutual information for
the quantification of information. There are two other entropic measures
that are often used: Rènyi and Fisher. Rènyi’s entropy is a parametric
generalization of Shannon’s entropy while Fisher’s entropy is a parame-
terization specific to a model of a probability distribution. Both measures
have found use in information-theoretic fusion (see e.g. [13] and [14]), yet
the use of both assumes a priori information. Since the target distribution
is not necessarily fully embedded in the measurement space, we instead
develop Shannon’s entropic measures as sufficient statistics.
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2.1 Entropy

The Shannon entropy of a continuous random variable, Y , with the prob-
ability density function p is

H(Y ) = −
∫

p(y) log p(y) dy

which may be estimated on an indexed, uniform partition of m subsets by

Ĥ(Y ) = log N − 1
N

m∑

i=1

ni log ni (1)

where N =
∑m

i=1 ni and ni ∈ R+, N ∈ Z+ . Note that the estimation of
the entropy of a continuous random variable is identical to the calculation
of a discrete random variable having m values and where ni/N may be
either the relative frequency or the normalization by the integral of all
values applied to the ith categorical value.

Three properties are sufficient to define the discrete entropy functional
as a measure of uncertainty [15]:

1. Ĥ(p1, . . . , pm) is defined and continuous ∀{p1, . . . , pm|0 ≤ pi ≤ 1,∑
pi = 1}.

2. Ĥ( 1
N , . . . , 1

N ) < Ĥ( 1
N+1 , . . . , 1

N+1).

3. Ĥ( 1
N , . . . , 1

N ) = 1
N

∑m
i=1 niĤ( 1

ni
, . . . , 1

ni
) + Ĥ(n1

N , . . . , nm
N ).

The first property states that the functional is continuous over the
domain of events. The second requires the functional to be monotonically
increasing with increasing uncertainty, i.e. if a partition is refined, the
uncertainty of an event occurring within this refined partition increases in
proportion to the degree of the refinement. The third property enforces
an alternative form of Bayes’ Law in terms of uncertainty, i.e. the uncer-
tainty associated with any particular event of a uniform partition is the
uncertainty of that event in respect to others within the subset plus the
uncertainty of that subset in respect to the set. Conditional uncertainty
is composed by addition whereas probabilities are composed by multipli-
cation in Bayes’ Law. With this understanding, we can consider that the
functional is Bayes-invariant to the structure of the partition of a fixed
number of subsets. If the random variable is categorical or discreet, it is
natural to think of the subsets of a partition as equivalence classes.
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Figure 2: Geometry of the en-
tropic functional.

Figure 3: Proportional division of
probabilities.

The logarithmic kernel of the entropy functional takes the multiplica-
tive conditional probability composition property of Bayes’ Law on the set
of discrete class probabilities into an additive group of entropy through
a group isomorphism from (R+,×) to (R,+). The transformation is in
respect to the partition so that the equivalence relation (bin width for
histogram probability estimates—a kernel in the statistical sense) is the
implicit transform argument. Once the contributions of the measurement
classes are transformed to an additive group structure, it is possible to
decompose multiplicative products by addition through the distributivity
of multiplication over addition and thereby associate all relative contribu-
tions of a total sum with individual component elements. This is nothing
more than the superposition principle for the function of multiplication
by a constant. So by (1), the contribution by the occurrence of events
to the total uncertainty is apportioned linearly. Thus, the third property
of uncertainty is satisfied by the group isomorphism property of the log-
arithm. Note that the base of the logarithm is not important. In base e
the units are “nats”.

Let N = 1 so that the negative value of the entropic functional is a
simple linear combination of logarithmic kernels weighted by their respec-
tive arguments. Examine the logarithmic kernel from a geometric-entropic
perspective (Fig. 2) for the discrete distributions of Fig. 3. The nega-
tive values of entropy are also the ordinates of the red circles dividing the
respective dashed lines terminating on the logarithmic graph at points:
{(.5 + δ), log(.5 + δ)} and {(.5 − δ), log(.5 − δ)} with segment lengths
proportional to (.5 − δ) and (.5 + δ) respectively. This geometric repre-
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sentation of the entropic functional is a consequence of the linearity of (1)
and the group isomorphism property of the logarithm. Fig. 2 also shows
that the greatest decrease in total entropy is achieved by the further res-
olution of events of the greatest relative certainty. It is important to note
that a data fusion scheme operating by greedy entropy minimization to
increase the certainty of probable events would also tend not to detect or
refine ambiguous probabilistic structure. This flaw is prevalent in näıve
optimization algorithms.

2.2 Mutual information

Shannon’s mutual information relates the entropic content of sets of ran-
dom variables to other sets through the intersection of common events in
joint probability spaces thereby giving an information-theoretic quantifi-
cation of data association. If restricted to finite probability spaces, nor-
malized measures of mutual information satisfy all Rènyi postulates for
measures of dependence [16]. The mutual information between random
variables I(X;Y ) is a symmetric measure of probabilistic dependence, i.e.

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X)+H(Y )−H(X,Y )

and is zero if and only if one variable is independent of the other, e.g.,
H(Y ) = H(Y |X) or H(X) = H(X|Y ) [17].

Mutual information can be estimated over partitions of X and Y as

Î(X;Y ) = log N +
1
N

∑

X

∑

Y

nx,y(log nx,y − log nx − log ny).

3 Estimation of entropic measures

The entropy of a set is dependent on the manner in which it is partitioned
as well as the probabilistic structure of the distribution. Probabilistic
structure is that structure of a distribution from which relationships may
be inferred. For example, uniform distributions have minimal probabilistic
structure whereas singletons have maximal probabilistic structure. The
entropy of a distribution is a measure of probabilistic structure and hence
also a measure of the bounds on the confidence in any relation that might
be predicated on the probabilistic structure. The probabilistic structure
of the discretized random variables may be unambiguously quantified once
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Figure 4: One-to-one relation:
H(X,Y ) = H(X) = H(Y ) =
I(X;Y ) = 1.61 nats.

Figure 5: One-to-one relation:
H(X,Y ) = H(X) = H(Y ) =
I(X;Y ) = 1.61 nats.

Figure 6: Multi-valued relation:
H(X,Y ) = H(X) = 1.61 nats;
H(Y ) = I(X;Y ) = 1.33 nats.

Figure 7: Multi-valued relation:
H(X,Y ) = 1.89 nats; H(X) =
H(Y ) = 1.61 nats; I(X;Y ) =
1.33 nats.

the partition is established and the partition entropy is evaluated. Parti-
tion entropy is maximal if the partition is uniform. Therefore, since we
are interested in the underlying probabilistic structure of a distribution
and not on the scaffolding of its estimation, in the absence of a priori
knowledge, a uniform partition between extremal values of the random
variable will be adopted here for all entropic estimates.

The random variables returned by sensors as well as a priori environ-
mental information may be either continuous valued or categorical. While
the interpretation of the results of the dependency analysis of situational
information is contingent on the meaning of the data being fused, the
data itself can always be discretized and normalized into a probabilistic
framework. Normalized variational structure is equivalent to probabilis-
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tic structure and can be assessed consistently amongst dependent sensor
dimensions once the zero probabilistic (variational) structure partition en-
tropy of those dimensions is discounted. Since the contribution of partition
entropy to the total uncertainty of the estimate is additive, the isolation
of probabilistic structure by entropic measures is simply a matter of sub-
tracting the partition entropy from the total uncertainty estimate. Note
that by determining the partition of optimal probabilistic structure for
each sensor dimension separately for a set of measurements it is implicitly
assumed that the measurements are representative of a population of in-
terest. When the probabilistic structure of a data descriptor is meaningful
only in respect to another exogenous variable, the probabilistic structure
of that variable is first determined and the mutual information with that
variable becomes the entropic measure of interest.

3.1 Categorical valued random variables

Given an unlimited stream of categorical data, the choice of grouping of
the classes for the entropic estimate is a compromise between resolution,
timeliness, and computing resources. If data is finite, the choice is op-
timized by an exhaustive search through all combinations of categorical
groupings for maximal probabilistic structure at some level of statistical
significance apart from the estimated partition entropy of a uniform dis-
tribution of the same order as the partition. The entropic estimates of
a uniform distribution are calculated by substitution of the probability
estimates of a binomial distribution of j ≤ N occurrences of m classes,

p(j) = f(j|N,
1
m

)

=
(

N
j

)
m−j(1 − 1/m)(N−j); (j = 0, 1, 2, . . . , N)

into the entropic (or mutual information) estimate,

H̄N
m = −m

N∑

j=1

(
j · p(j)

N

)
log
(

j · p(j)
N

)
.

The value of the partition entropy of the estimated zero probabilistic struc-
ture offset may be pre-computed.

If the categories are unordered, the given classes together with the
indeterminate class are taken as the partition. Unless the categories are
known to be statistically independent from one another, combinations of
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categories should be tested to determine the partition of maximal proba-
bilistic structure. For example, if forming a map between X and Y that
the region {(X,Y ) : X ∈ [4, 5], Y ∈ [4, 5]} should be consolidated into a
single class.

The number of combinations of categories for each partition of order,
m, is

(
N
m

)
where N is the number of potential class labels. If an exhaus-

tive evaluation is infeasible, categories may be suboptimally aggregated
by Kullback-Leibler linkage lengths.

3.2 Continuous valued random variables

If the data is ordered and in the absence of a priori partition informa-
tion, the probabilistic structure can be directly estimated as the uniform
binning interval that maximizes the difference of the entropic estimate
and its corresponding zero probabilistic structure partition entropy. A
common method to approximate continuous-valued functions is by the
enforcement of a regularity condition through the addition of a penalty
function in an objective function. Using this approach, the optimal bin
width is determined through

arg max
m

(H̄N
m (x) − ĤN

m (x) − λG)

where G is the penalty function, m is the number of uniform bins of
the entropic estimate (alternatively, the variable of interest in the mutual
information estimate), and λ ∈ R+ is the penalty factor. If the data are
uniform samples, then following [19], G may be chosen as a bias-corrected
estimator of the finite difference approximation,

G = m2

(
m−1∑

i=1

(
ni+1 − ni

N

)2

− 2
N

)

where ni is the number of occurrences found in consecutively indexed bins.
The penalty function is the sum of squares of the differences in estimated
probabilities of adjacent bins so smooth functions are penalized with large
values of λ. Since smoothness is estimated relative to process measure-
ments, if the temporal extent of the optimization is much greater than
the local neighborhood of sampling interval, then the range of optimal bin
width should be readily discernible by large deviations in a unidirectional
line search of H̄N

m (x) − ĤN
m (x) − λG from λ = (0, H̄N

m (x)).
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4 Data descriptor set selection

There are known knowns. These are things we know that we
know. There are known unknowns. That is to say, there are
things that we now know we don’t know. But there are also
unknown unknowns. These are things we do not know we
don’t know. [20]

U.S. Secretary of Defense Donald Rumsfeld.

To date, anomaly detection and target identification have largely been
either treated separately or have been framed distinctly (see e.g. [21]).
However, in this section we present a unified framework for the information-
theoretic analysis of both aspects of data fusion. Under this framework
uncertainty is quantified by class and managed by data descriptor dimen-
sion. The object of anomaly detection within this statistical context is
to find significant probabilistic structure within the measurement space
where none is expected. Conversely, the task of target identification is to
associate the discovered probabilistic structure with that of known tar-
gets. In practice, the order of discovery is often reversed, i.e. that which
cannot be matched with confidence to a known target signature model is
categorized as a false alarm or anomaly.

The traditional methods of data fusion rely on “known” models where
model mismatch is considered to be error rather than uncertainty. The
great weakness of these näıve approaches is that they fail to assess un-
certainty as a property of the fusion process independent of potentially
erroneous target assignments and thus confuse what is knowable from
what is unknowable. In this section we propose an information-theoretic
data fusion framework where uncertainty is explicitly quantified by the
data. In this framework targets are identified within a subspace of the
anomaly detection measure space. So, when a target is found, it is pos-
sible to assess not only the confidence of the identification, but also the
confidence of detection.

4.1 Anomaly detection (knowable unknowns)

In order to find probabilistic structure that is anomalous, a space of
maximal probabilistic structure is found within the data space formed
by descriptors above a specified level of statistical significance. That is,
anomalies occur in data spaces XΩ that maximize mix while minimizing
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redundancy between data descriptors,

H0 = arg max
XΩ

(
H̄N

mΩ
(XΩ) − ĤN

mΩ
(XΩ)

)

H̄N
mΩ

(XΩ) for any XΩ ⊂ Xα where Xα is the feasible set of data descrip-
tors, is the zero probabilistic structure partition entropy estimate on the
partition mΩ inherited from Xα. Note that H0 is monotonic with dimen-
sionality,

H0(X1) ≤ H0(X1,X2) ≤ H0(X1,X2,X3) . . . , ∀(X1,X2,X3, . . . ,Xn) ∈ Xα.

Also, since

H0(X1,X2, . . . ,Xn) ≤ H0(X1,X2, . . . ,Xn−1) + H0(Xn)

it is possible to bound entropic estimates of a certain dimensionality over
a given space without the need to compute the estimate over all combi-
nations of dimensions.

4.2 Target identification (knowable knowns)

Given a subspace of maximal probabilistic structure XΩ within the feasible
measurement space, Xα the objective of target identification is to match
geospatially localized regions of probabilistic structure XΩn to known tar-
get signatures, Y . Spatiotemporal dimensions need not be within the
optimal data space, XΩ. However, it is necessary to be able to register
the data space with the physical space in order that the identifications
have relevance in a military context. Of course, nonmilitary applications
of data fusion are not always constrained by the need to associate events
with physical coordinates so we will proceed in the discussion with the
understanding that target identification is augmented by geospatial side
information as necessary.

With the preceding caveat, the information-theoretic optimal set of
data descriptors is determined by the maximization of the bias corrected
mutual information estimate between the optimal entropic set of data
descriptors and the target, i.e.

I0 = arg max
Xω

(
ĪN
mΩ

(Xω;Y ) − ÎN
mΩ

(Xω;Y )
)

where Xω ⊆ XΩ. As before, Xω inherits the partition structure of XΩ.
The effect of this optimization is to maximize redundancy while minimiz-
ing mix for any dimensionality less than n = dim(XΩ). The optimization

Rev.Mate.Teor.Aplic. (ISSN 1409-2433) Vol. 18(2): 299–324, July 2011



sensor fusion using entropic measures of dependence 315

is a combinatorial problem in integer programming. Thus, the determi-
nation of the optimal subspace for target identification follows the same
algorithmic rules as the determination of the optimal space for anomaly
detection.

As in the case of entropy, the monotonicity of the estimated mutual
information follows from the convexity of the natural logarithm over any
interval on R+, i.e.,

I0(X1;Y ) ≤ I0(X1,X2;Y ) ≤ I0(X1,X2,X3;Y ) ≤ . . .

for any {X1,X2,X3, . . . ,Xn} ∈ Xω. Also, since

I0(X1,X2, . . . ,Xn;Y ) ≤ I0(X1,X2, . . . ,Xn−1;Y ) + I0(Xn;Y )

mutual information estimates within XΩ may be conservatively bounded
by the sum of pairwise estimates.

4.3 Statistical noise estimation (the unknowable)

Naturally, events that occur outside of the feasible measurement space,
Xα, cannot be detected. Likewise targets which are not characterized in Y
cannot be identified. Additionally, we are able to quantify the uncertainty
within these spaces that is also unknowable. This is the zero information
partition entropy, H̄N

mΩ
(XΩ) and mutual information, H̄N

mΩ
(Xω;Y ). These

values exist on the interval [0, log N ] and are also dependent on the car-
dinality of the partition which in turn is chosen for maximal probabilistic
structure of the corresponding random variable. Assuming additive Gaus-
sian white noise uniformly distributed over the interval of measurement,
the associated uncertainty is Hδ = m log pδ where m is the cardinality of
the partition and pδ is the expected measurement error.

4.4 Entropic optimization by dimension algorithm

The globally optimal combination of entropic measures for either anomaly
detection or target identification can be found following the branch and
bound algorithm described in [22] with correction. The algorithm enu-
merates integer combinations via a spanning tree (Fig. 8), the branches
of which are evaluated in order starting from the top node. At any node
in the search of the spanning tree, subordinate branches are evaluated and
ordered by decreasing entropic measure. If the bounding inequality is not
satisfied for the current nodal maximal estimate, the algorithm backtracks
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and selects the next unexplored subordinate branch. The critical determi-
nate of the efficiency of the algorithm is the selection of an efficient bound.
Since entropies correspond to probabilities on sets [23], to the first degree
of intersection, the bound on a branch of dimensionality k in a problem
of dimensionality n such that (k < n) is conservatively given by

H0(X(n)) ≤ H0(X(k)) + max
α

n−k∑

i=1

{
H0

(
X(k)

)
− H0

(
X(k)\Xαi

)}

where X(n) is the data descriptor set at level n and α is the feasible set
indices under consideration for inclusion to the k+1-dimensional set. This
bound is computationally efficient as it does not require the calculation of
combinations of entropies unless that portion of the branch has already
been evaluated. Since the cardinality of the partitions increase exponen-
tially with the dimensionality of the descriptor space while N remains
fixed, a dimensional stopping criterion need not be calculated a priori,
but rather can be conservatively estimated by an evaluation of the zero
probabilistic structure partition entropy over the minimal product of feasi-
ble classes for the various dimensionalities. Therefore, while the spanning
set might conceivably be n-dimensional, it is unlikely that high dimen-
sional sets would be feasible. Note also that descriptors are not feasible if
the optimal entropy is less than the specified measurement error entropy.

The corresponding bound for mutual information is

I0(X(n);Y )≤I0(X(k);Y ) + max
Ω

n−k∑

i=1

{
I0

(
X(k);Y

)
−I0

(
X(k)\XΩi;Y

)}
.

This bound was found to be a computationally efficient compromise be-
tween the combinatorics of the local rejection of branches by the bound
and the global increase in computation of interactions by dimensionality
[24].

5 The 1998 KDD cup competition

It is often extremely difficult or impossible to assess the efficiency of a
proposed data fusion technique due to the propensity for published results
to be influenced by opaque and inaccessible incorporations of a priori
information. Consider the problem of data fusion for target identification.
An optimal descriptor set for target identification maximizes the useful
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Figure 8: Branch and bound tree (the feasible set of descriptor indices are
shown at the level of the estimate).

probabilistic structure of the measured data in an environment that both
discriminates a target from the background clutter and distinguishes it as
a target of interest. If the optimal target signature is unknown a priori,
then the search for the optimal descriptor set is a problem in system
identification. If the ground truth descriptors of a target are available
along with sensor measurements, then the statistical problem of descriptor
set selection for target identification is the same as that of data mining
for descriptor fields of a target field.

The 1998 Knowledge Discovery and Data Mining (KDD) was chosen
as a basis of comparison of the potential efficiency of the proposed use
of entropic measures since the problem set closely approximates the data
fusion challenges of mixed variables, sparsity of measurements, and am-
biguity in the relation between descriptor data and characteristic target
signatures. However, unlike the general data mining problem where mul-
tiple descriptor sets can be formulated dependent on the existence and
local character of the data, operational fusion architectures are generally
constrained to use a fixed set of descriptors since these descriptors often
correspond to actual sensor measurements. Descriptor set selection was
therefore constrained to only the determination of the globally optimal
set for all data and thereby not allowing a possible modeling advantage
by data segmentation.

The KDD competition is conducted annually and attracts the efforts of
analysts in the areas of statistical data mining, sensor fusion, and system
identification world-wide from both industry and academia. Other more
recent KDD competitions focused on model learning, association rule dis-
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covery, performance criteria, semantics, and relational analysis. The 1998
KDD competition attracted 57 participants, 21 of which returned results
with slightly greater than half analyzed by production software tools with
an average price of $27,761. The objective of the competition was to max-
imize the net receipts of a direct mailing to 96,367 individuals of a vali-
dation set given a $0.68 cost of solicitation. The total data set of 191,779
records was divided randomly into training and validation sets with 479
record descriptors and one target field consisting of the contributions re-
ceived. There were no contributions less than the cost of solicitation so
the target of association was simplified to be a binary value corresponding
to whether or not the individual responded.

Since the signature of the target to be identified exists only within the
same data set as the descriptors, the optimal detection space is taken as
the entire feasible set. Also, since we are not concerned with anomaly de-
tection in the comparison to competition results, this step of data fusion
was omitted and the partitions for the descriptors were determined by op-
timal mutual information relative to the optimal target entropic partition.
The composition of categorical classes within descriptors was determined
by exhaustive combinatorial optimization of mutual information with the
target up to and including cardinality four. For five and greater classes,
composition of categorical classes was determined by the aggregation of
Kullback-Leibler linkage lengths. The cutoff grouping was determined by
inspection for purposes of the examination of the methodology. This is
a shortcut that does not compromise the qualitative conclusions as the
same method might be automated to give similarly good results at little
computational cost.

An examination of the zero probabilistic structure over the entire
record length reveals that for all data descriptors, there is no appreciable
probabilistic structure for a number of partitions greater than the prod-
uct of the first five primes. At a maximal 2310 partitions, the statistically
significant mutual information at a measurement confidence of 99% yields
measurement error entropy of 0.0020 nats under the assumption of addi-
tive Gaussian white noise. By this token, 50 data fields had significant
probabilistic structure in respect to the target field. These descriptors
formed the feasible set for target identification.

The model is taken to be the mean value of the target within each class
of a hypercube formed by the model descriptor sets. The number of de-
grees of freedom of a partitioned hypercube is the number of hyperclasses.
Therefore, while maximizing the statistical agreement between the infor-
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mation of a descriptor set and the information of a target signature for a
particular dataset, it is also necessary to balance the number of degrees of
freedom of the model so that it does not overfit the data. Since the number
of degrees of freedom is a product of the class order of each dimension, it is
sensible to give priority to the minimization of the number of dimensions of
the model rather than the minimization of classes for a particular descrip-
tor set. The feasible dimensionality of the descriptor set is conservatively
upper-bounded by n such that minΩ |classesopt|(n) ≥ maxΩ |classesopt|.
Here n = 12 since minΩ |classesopt| = 2 and 212 ≥

∏M
i=1 pi, where pi is a

prime and M is determined to be five.
It would be extremely computationally expensive to calculate entropic

measures on all combinations of fifty sensors up to and including dimen-
sionality twelve. Therefore, the search for the optimal descriptor set for
target identification is broken into two steps. In the first step, the branch
and bound algorithm is exercised on all 50 feasible descriptor sets up to
dimensionality four. Sets of dimensionality two are also calculated by the
same algorithm. Next, the mutually exclusive optimal descriptor sets of
dimensionality four are composed up to dimensionality twelve. These sets
are further refined by the augmentation of mutually exclusive descriptors
of dimensionality two and subsequently one about descriptor sets that
demonstrate a potential for model improvement according a ratio of merit
to degree of freedom. The results of these iterations are shown in Table 1.

The probabilistic structure of the target signature over the learning set,
Profit′Lrn , is the measureable value of the exogenous portion of the target
data descriptor, i.e. the profit of a solicitation above the ground clutter
or in this case, above the maximum of the mail all and mail none profit
options. The Bayesian posterior sensor information is the product of the
conditional and prior target signature estimates and may be normalized
by the degrees of freedom to yield the portion of the target signature that
might be reasonably found by a random sampling of the population.
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Table 1: Descriptor set selection.
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Indices: Data Type Unique Data Class
Descriptor Label Groups
4: PVASTATE categorical (1) (2,3)

10: HOMEOWNR categorical (1,3) (2)

13: CHILD12 categorical (1) (2,3,4)

23: RFA 2 categorical
(1,6,7,9,13) (2) (3,4,12)

(5,8) (10,14) (11)

48: RFA 2F categorical (1) (2,3,4)

49: RFA 2A categorical (1,4) (2,3)

Table 2: Selected model descriptors.

There is no claim that there should be a linear relationship between
number of degrees of freedom and model fitness; rather the claim is that a
meritorious model that does not overfit should have a greater criterion of
fit than that of overfit models. This is indeed what is found by as shown
in Table 1 where C is the number of classes and MI is the estimated
mutual information between the target and descriptor fields. The first
three entries of Table 1 are formed by assembling the most informative
disjoint sets of four sensors clearly show that the set of dimensionality
twelve overfits. Expanding on the set of dimensionality eight by the most
informative partition of two of the last set of four also reveals overfitting
in both cases. Expanding on the first set of four by all partitions of
two sensors gives two characteristic combinations of 64 and 192 classes,
neither of which significantly overfit the data. Of these two sets, the set
highlighted more fully characterizes the target signature. Examining all
combination of dimensionality seven of this set, it is clear that further
expansion of the set overfits. Comparison with competitive results affirms
that data descriptors [4, 10, 13, 23, 48, 49] (Table 2) is characteristic of
the recoverable extent of the target signature as annotated by miTool in
Fig. 9.

6 Conclusions

This paper introduces a principled data fusion methodology by entropic
measures. Entropic measures are shown to quantify multi-relational de-
pendencies, an ability which is essential for the consistent quantification
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Figure 9: 1998 KDD Cup results.

of information throughout the various levels of a fusion architecture. The
partitioning of the entropic estimates is discussed in detail and optimal
partitioning algorithms are presented for both continuous and categorical
cases. Finally, a branch and bound method of optimal data descriptor set
selection is given and a demonstration on a standard competition database
shows that the information-theoretic technique shows good results for tar-
get identification.
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