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Abstract

One of the most important tasks in image processing problem
and machine vision is object recognition, and the success of many
proposed methods relies on a suitable choice of algorithm for the seg-
mentation of an image. This paper focuses on how to apply texture
operators based on the concept of fractal dimension and cooccurence
matrix, to the problem of object recognition and a new method based
on fractal dimension is introduced. Several images, in which the re-
sult of the segmentation can be shown, are used to illustrate the use
of each method and a comparative study of each operator is made.
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Resumen

Una de las tareas más importantes en el procesamiento de imá-
genes es el reconocimiento de objetos, y el éxito de muchos de los
métodos propuestos se basa en la adecuada elección del algoritmo
para la segmentación de la imagen. Este trabajo se enfoca en cómo
aplicar los operadores de textura basados en los conceptos de di-
mensión fractal y de matrices de co-occurencia, al problema de re-
conocimiento de objetos y se introduce un nuevo método basado en
la dimensión fractal. Para ilustrar cada método se utilizan imágenes
en las que se muestra el resultado de la segmentación y se realiza un
estudio comparativo de cada operador.

Palabras clave: Segmentación de Imágenes, texturas, dimensión fractal,
matriz de co-occurencia.

Mathematics Subject Classification: 60J05, 62M40.

1 Introduction

Texture, an intrinsic property of object surface, is used by our visual per-
ception system to understand a scene; therefore texture analysis is an
important component of image processing. But texture is not easy to
quantify since there is neither a consensus on its definition nor a precise
mathematical formulation for it. When the visual examination of an im-
age suggests that the basis for discriminating various structural regions
is a texture rather than color or brightness, it may be possible to use a
simple texture operator. The texture analysis problem includes classifica-
tion/discrimination, description and segmentation of texture regions in a
scene. This paper focuses on the problems of texture segmentation.

Texture analysis methods can be divided into two classes: structural
methods and statistics methods. On the one hand, in structural methods
the texture of the image can be considered as the regular repetition of a
micro-texture with some rule and the image can be considered as a fractal
surface, and it is possible to think that the fractal dimension may be ap-
propriate for the characterization of the image. The fractal dimension has
been used as descriptor for the image segmentation by texture operators
in the last years. It was introduced by Pentland [8] who observed that
fractal dimension was relatively insensitive to image scaling and showed
strong correlation with human judgments of surface roughness. Kuklinski
[2] applied fractal analysis techniques to medical images, for automatic
identification of cancerous growth regions; Zwiggelaar & Bull [12] applied
them to the problem of plant recognition in synthetic aperture radar (SAR)
images. These and other applications can be seen in [7, 9, 10, 11]. These
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are just a few applications that clearly demonstrate serious interest in frac-
tal based methods for low-level recognition problems. There are alternative
techniques for computing fractal dimension, that use a local operator to
measure the local fractal dimension in each pixel of an image. Three differ-
ent techniques to do it are: the Box-counting Method, the Hurst’s Method
and the Method of the Range, introduced in this report, which is an easy
technique that produces good results.

On the other hand, the purpose of statistical methods is to characterize
the stochastic properties in the spatial distribution of the gray level in the
image. Haralik [3, 4, 5] developed techniques using first order statistics
and introduced second-order statistics, more precisely texture measures
based on gray level co-occurrence matrices. Each element of the gray
level co-occurrence matrix represents the relative frequency with which
two neighboring pixels separated by a distance of ∆x columns and ∆y

lines occur, one with gray tone g and the other with grey tone g′. Such
matrices of gray level spatial dependence frequencies are a function of the
angular relationship between the neighboring resolution cells as well as the
function of the distance between them. In this paper only five of the texture
features extracted from the gray level co-occurrence matrix are presented,
they are: entropy, contrast, energy, local homogeneity and correlation.

All the algorithms presented in this paper are unsupervised in the fol-
lowing sense: it does not require a priori knowledge on the texture of the
image, no learning steps in particular are necessary; the number of regions
or texture classes needs not to be known either; only one parameter is
needed in the threshold segmentation procedure. All the techniques dis-
cussed in this research are neighborhood operators that access pixels in a
small area around each central pixel, perform some calculation with those
values, and then derive a new value for the central pixel. In all the cases,
the new value is used to produce a new image and it is the original values
of pixels which are used in the neighborhood around the next pixel as the
operator is repeated throughout the image.

The aim of this report is to compare the effectiveness of some texture
features based on fractal dimension and that of based on co-occurrence
matrices.

This paper is organized in the following manner: Section 2 (Co-occur-
rence matrix) presents the gray level co-occurrence matrices, the texture
features extracted from them and it also shows the results of these algo-
rithms to some images; Section 3 (Fractal Dimension) presents the concepts
of fractal dimension and how to implement these concepts in the images
with three different techniques to estimate the fractal dimension, partic-
ularly the introduced Method of the Range, describes each algorithm in
pseudo code and shows the results of these algorithms, implemented on
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C+, to some images. Finally, Section 4 (Conclusions) provides conclusions
of comparing these techniques.

2 Co-occurrence matrix

The grey level co-occurrence matrix is defined as a joint distribution of the
grey levels of two pixels separated by a given displacement τ . In cartesian
coordinates the displacement can be chosen as a vector τ = (∆x,∆y). Each
element in the matrix is Aτ (g, g′) is defined as

Aτ (g, g′) = {# pair(g, g′)| image(x, y) = g ∧ image(x + ∆x, y + ∆y) = g′},

where g and g′ are grey levels in the image. The size of the co-occurrence
matrix Aτ is G × G, denoting G the number of grey levels in the image

We illustrate this concept with a binary model and its matrix Aτ for
τ = (0, 1):

1 1 1 1 1
1 1 1 1 0
1 1 1 0 0
1 1 0 0 0
1 0 0 0 0

Aτ =

0 1

0 6 0
1 4 10

Haralick et al, [3] described fourteen not independent features extracted
from the grey level co-occurrence matrix, and showed that when they were
applied to large rectangular areas in satellite photos, these parameters
could distinguish water from grassland, different sandstones and woodland
from urban regions. The texture features extracted from the grey level
co-occurrence matrix that are applied to this research are presented below
and their physical meaning is also given

a) Energy
∑

g,g′

Aτ (g, g′)2.

Energy is also called angular second moment. Energy measures tex-
tures uniformity, that is, pixel pairs repetition. When the image under
consideration is homogenous (only similar gray level pixels are present),
energy reaches its maximum. Thus, high values of energy occur when the
grey level distribution over the window has either a constant or a periodic
form.
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b) Entropy

−
∑

gg′

Aτ (g, g′) log
(

Aτ (g, g′)
)

.

Entropy measures the disorder of an image. When the image is not
texturally uniform, entropy is very large. Conceptually, energy and entropy
are inversely correlated.

c) Contrast
∑

g,g′

(g − g′)2Aτ (g, g′).

Spatial frequency is the difference between the highest and the lowest
values of a contiguous set of pixels. The gray level co-occurrence matrix
contrast is the spatial frequency where the displacement is τ = (∆x,∆y).
Contrast is a measure of the liner variation presented in the image.

d) Local homogeneity

∑

g,g′

Aτ (g, g′)

1 + (g − g′)2
.

Local homogeneity is also called inverse difference moment and it mea-
sures images homogeneity. It assumes larger values for smaller grey tone
difference in pair elements. The local homogeneity and the energy are
strongly but inversely correlated.

e) Correlation

∑

g,g′

(g − µ1) (g′ − µ2) Aτ (g, g′)

σ1 σ2
.

Correlation is a measure of grey level linear dependencies in the image,
high correlation values imply a linear relationship between the grey levels
of pixel pair. Thus the correlation is uncorrelated to energy and entropy,
that is, to pixel pair repetitions

One of the most important decisions when texture features based on
co-occurrence matrix are used is how to choose the displacement. Usually
the grey levels co-occurrence matrices are computes for different values of
τ and that one which maximizes some statistic is chosen. The suggested
statistic is

χ2(τ) =
∑

g,g′

A2
τ (g, g′)

Aτ (g, ·)Aτ (·, g′) ,

that can be understood as a normalization of the scene energy to the grey
level linear dependence in the image.
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(a)

(b) (c) (d)

Figure 1: (a) Original Image. (b) Energy Operator (c) Entropy Operator.
(d) Contrast Operator.
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Some of these operations are obviously easier than others to calculate
for all the pixels in an image. The resulting values are scaled to create a
new image that can be segmented by brightness thresholding. Sometimes
experimentation with several texture operators is required to find the one
that gives the best separation between the object and its surrounding and
in consequence the best segmentation.

The results of applying some of these operators is illustrated in figure
1. Figure 1 (a) is the original image, (b) shows the computation of the
Energy Operator, (c) shows the computation of the Entropy Operator and
(d) shows the computation of the Contrast Operator.

3 Fractal dimension

Let H(<n) be the space of all nonempty compact subsets of the Euclidean
space <n. A set A ⊂ H(<n) is said to be self similar if A is the union of
N(ε) distinct and non overlapping copies of itself each of which is similar to
A scaled down by a radio ε. The fractal dimension D of A can be defined
by

D = lim
ε→∞

ln N(ε)

ln(1/ε)
, (1)

in other words N(ε), the number of rules of length ε required to cover the
set A, is related to the fractal dimension D by the equation N(ε).εD = 1.

The following sub-sections focus on three methods for estimating the
fractal dimension on an image: the Box-counting method, that is one of
the simplest methods to implement and visualize; the Hursts method, that
is particularly efficient on medical images, and the Method of the Range
which has been introduced in this paper. Some experimental results of
each method are shown using one particular image to compare them.

3.1 Estimating fractal dimension

3.1.1 Box-counting Method

There are several approaches for estimating the fractal dimension in an
image, one of them is the Box Counting method. The method consists on
laying finer grids atop the image and counts the number of grid-squares
which contain a part of the image.

There exists several methods to compute this estimate; most of them
are applied to images that must be turned into binary images. A method
that can be applied to images with different gray levels in the interval
[0, 255], where 0 corresponds to black and 255 to white is descibed in [1].
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The fractal dimension is based on equation (1). In our method, N(ε)
is counted in the following manner. Let us consider that the image of size
M × M pixels has been scaled down to a size s × s where M/2 ≥ s ≥ 1
and s is an integer. Then we have an estimate of r = s/M . Now, let us
consider the image as in 3D space with (x, y) denoting 2D position and
the third coordinate z denoting the gray level. The (x, y) is partitioned
into grids of size s × s. On each grid there is a column of boxes of size
s × s × s, this is, a partition on the gray levels is made. Let k and l be
the minimum and maximum gray level of the image in (i, j)-th grid fall in
box number, then the contribution of N(ε) in the pixel (s) of the grid is
nε(s) = l − k + 1. Taking contributions from all grids, we have

N(ε) =
∑

s

nε(s).

Then N(ε) is computed to different values of ε, and the fractal dimension
can be estimated from the least square linear fit of ln N(ε) against ln ε.

Box Dimension Algorithm

• A centered squared window of size l1 = 17 is taken for each pixel.

• The window is divided in (1/ε)2 squares and the range of intensities
is divided into (1/ε) levels, for five given values of ε ∈ (0, 1].

• Denoting l and k the maximum and minimum gray level in the square
respectively, nε(s) = l− k +1 is computed for each pixel and N(ε) =
∑

s nε(s) is computed for each ε.

• The line y = ax+b is fitted to the pairs (ln N(ε), ln ε) and the fractal
dimension is estimated with the slope of the fitted line, D = a.

• The histogram with all the values D is constructed and, choosing a
threshold h, the image is recolored putting black on each pixel where
D > h and white on each pixel where D ≤ h.

This technique is illustrated in figures 2 and 3. Figure 2 (a) shows a
coast, (b) shows the computation of the box dimension in each pixel, and
(c) shows the segmented image. This leads us to verify that this technique
is particularly efficient in coastal images. Figure 3 is another application
of the segmentation method for recognizing certain city blocks in a city.
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(a) (b) (c)

Figure 2: (a) Original Image. (b) Box Dimension. (c) Segmented Image.

(a) (b) (c)

Figure 3: (a) Original Image. (b) Box Dimension. (c) Segmented Image.

3.1.2 Hurst’s method

A particularly efficient method for computing the fractal dimension of sur-
faces from elevation images is the Hurst coefficient, or rescaled range anal-
ysis. This procedure plots the greatest difference in brightness between
points along a linear traverse of the image or surface as a function of the
search distance, on log-log axes. When the range is scaled, dividing by the
standard deviation of the data, the slope of the resulting line is directly
related to the fractal dimension of the profile.

The size of the window used to process the image is a compromise be-
tween the desire to include many pixel values, for accurate results, and
the need for fast calculation. For each pixel, we consider a neighbor-
hood region consisting of thirty seven pixels, in a seven pixel wide oc-
tagonal shape, as shown in Figure 3. Each pixel in the diagram is labeled
to indicate its distance from the center of the octagon. The distances,
in pixel units, and the number of pixels at each distance are listed in
Table 1.
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Figure 4: Octagonal neighborhood for Hurst’s method.

Pixel class Number of pixels Distance from center: d

a 1 0
b 4 1

c 4
√

2
d 4 2

e 8
√

5

f 4
√

8
g 4 3

h 8
√

10

Table 1: Classification of the pixels from Figure 4.

The application of the operator proceeds to examine the pixels in the
neighborhood around each pixel in the original image. The brightest and
darkest pixel values are found for each of the distance classes and their
distance used to construct a Hurst plot. Performing a least squares fit of
the slope of the log (brightness difference) vs. log (distance) relationship is
simplified because of the distance values, and their logarithms, are unvary-
ing and can be stored beforehand in a short table. It is also unnecessary
to divide by the standard deviation of pixel brightness in the image, since
this is a constant for each pixel in the image and the slope of the Hurst plot
will be arbitrarily scaled to fit the brightness range of the display anyway.

Hurst’s method Algorithm

• A centered octagonal window as in figure 1 is taken for each pixel.

• Denoting Md = {Maximum gray level over the pixels t : dist(t, s) <
d} and md = {Minimum gray level over the pixels t : dist(t, s) <
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d}, the brightness range rd = Md−md is computed for each distance
d.

• The line y = ax + b is fitted to the pairs (log(d), log(rd)).

• The fractal dimension is estimated according to the slope of the fitted
line, D = a.

• The histogram with all the values D is constructed and, choosing a
threshold h, the image is recolored putting black on each pixel where
D > h and white on each pixel where D ≤ h.

This technique is illustrated in figures 5 and 6. Figure 5 (a) shows a
coast, (b) shows the computation of the Hurst’s dimension in each pixel
and (c) shows the segmented image. The segmentation is not as good as
before. The edges are not well defined. Figure 6 is another application
of the method in a medical image, a mammogram, where the technique is
more efficient.

(a) (b) (c)

Figure 5: (a) Original Image. (b) Hurst Dimension. (c) Segmented Image.

3.1.3 Method of Range

In this subsection a variation of the box counting method is introduced.
The method computes the fractal dimension as a function of the brightness
range, keeping the idea of refining the grid over the image, while improving
the efficiency of the computation, [6].

Method of Range Algorithm

• A centered squared window of size l1 = 9 is taken for each and
the brightness range as r1 = M1 − m1 is computed, where M1 is
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(a) (b) (c)

Figure 6: (a) Original Image. (b) Hurst Dimension. (c) Segmented Image.

the maximum brightness, and m1 is the minimum brightness in the
window.

• For the same pixel, we take a small squared window of size l2 = 5,
centered at that pixel. We compute the brightness range as r2 =
M2 −m2, where M2 is the maximum brightness, and m2 is the min-
imum brightness in the window.

• We estimate the fractal dimension as

D =
r1 − r2

ln l1 − ln l2
. (2)

• The histogram with all the values D is constructed and, choosing a
threshold h, the image is recolored putting black on each pixel where
D > h and white on each pixel where D ≤ h.

Equation (2) represents the ratio between the difference of the ranges in
each window and the proportion of the length of each window, in log scale.
This technique is illustrated in figures 7 and 8. Figure 7 (a) shows a coast,
(b) shows the computation of the fractal dimension with the method of
Range in each pixel and (c) shows the segmented image, with well defined
edges but with no homogeneous regions. Figure 8 is another application
where the method is extremely efficient.

4 Conclusions

Now that the algorithms have been described, they could be compared.
Perhaps a more important indication of a segmentation algorithm’s useful-
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(a) (b) (c)

Figure 7: (a) Original Image. (b) Method of Range. (c) Segmented Image.

(a) (b) (c)

Figure 8: (a) Original Image. (b) Method of Range. (c) Segmented Image.

ness is its stability. If an algorithm reasonably gives correct segmentation
on average, but is unpredictable on any given image, it will be useless as
a preprocessing step. Segmentation with low bias and low variance are
required, in other words algorithms that have low variability with respect
to their parameters. In this paper each method was applied to the segmen-
tation of a series of different images to gauge the strengths and weaknesses
of each one.

About the texture features based on co-occurrence matrices, energy or
angular second moment, contrast and entropy were chosen. All of them
were computed for different values of τ and the chosen was τ = (0, 1). The
operator energy has been efficient and the operator entropy has been the
best to define edges, but as their computational coast was too expensive,
the methods based on fractal dimension are preferred. About the three
operators based on local fractal dimension, the Box Dimension, the Hurst’s
Method, and the introduced Method of the Range, it is well known that
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the box dimension algorithm is extremely efficient in coast image, but the
Method of the Range has also been effective in those kind of images and
it is computationally faster, moreover the Method of the range defined the
edges very well, although the segmentation was not so homogeneous in the
big regions. The lower computational weight is not the only advantage
of the method of the Range, it has surprisingly been effective when the
image had dimensions that took values near D = 2 and D = 3. The
Hurst’s Method was originally proposed to medical images and was very
efficient in them, but it has been heavier, computationally talking, than
the method of the Range, which also obtained acceptable results in those
kinds of images. The algorithms were compared all using the same group
of images some of them natural images, others taken from the Brozart
album and few of them SAR images. The introduced method of the Range
could be used to build a supervised classifier based on a priori segmented
images such as training blocks.
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