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Abstract

We consider the Schrédinger operator on the unit circle, whose potential is an
Ornstein — Uhlenbeck type process, with drift depending on its position. We describe
the distribution of the periodic groundstate, based on the circular brownian motion
measure. The results exposed here, have been mentioned, but not proved, in [7].

Keywords: Schrodinger Operator, Ornstein — Uhlenbeck Process, Periodic Groundstate,
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Resumen

Se considera el operador de Schrédinger en el circulo unitario, con un potencial de
tipo Ornstein — Uhlenbeck, cuyo factor tendencial depende de la posicién. Se describe
la distribucién del primer valor propio periédico, usando el movimiento browniano
circular. Los resultados expuestos aqui, han sido mencionados, pero no demostrados,
en [7].

Palabras clave: Operador de Schrodinger, proceso de Ornstein — Uhlenbeck, estado
periddico, movimiento browniano circular.
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1. Introduction

The standard Ornstein—Uhlenbeck process is the diffusion ¢ satisfying the stochastic
differential equation
dgq = db — maqdt,
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where m is a constant, and b is a standard Brownian motion. It is explicity given by!

t
q(t) = q(0)e™™ + e_mt/o e db,,

t . 2mt _ . .
where the process fo e™7db, can be written as W (e T 1>, for some Brownian motion

W starting at 0. This allows the computation of the transition density for ¢, obtaining in
particular that [ p(1;a,a)da = (1 —e™™)~! < co. The process ¢ can be made periodic by
conditioning it to have ¢(1) = ¢(0). The resulting finite-dimensional distributions are:

n

Plg, € dag, ..., q, , € dap_1] = (1 — e_m) Hp(ti —ti—1;ai—1,a;)dag...day_1,

i=1
where 0 =tg < t; < ... <t, =1, and a,, = agp.
The coordinate process in C(S') is a periodic Ornstein - Uhlenbeck process under the
probability measure d@Q, on C(S"), defined by

N ] R A CORTIER

Tr=a

= @—e) [ BRIl la(1) = d) s 0. 0)da.

Moreover, by the Cameron—Martin formula one can get the following relation between dQ),
and the circular Brownian motion measure du. on C(S?) :

/ 6(q)dQ. = E.[¢] = \/E sinh () / s()e % P ap,.

The details can be found in [5].
Remark: Taking ¢ = 1, this gives the corollary:

/e_wé2 o q2d,u* = \/g [sinh (%)}_1

With respect to the probability Py, induced by p, on H := {q : fol q= 0}, we get the
following identity:
m2 1 o m
EVe 2 0| = —— 1
] 25inh(%) @
The whole argument can be applied to the more general case dg = —m/(q)dt + db, for any
reasonable drift m. This is done in the next section. The case of m = m(t)q is treated in

[5].

2. The equation. What is known
We consider Hill’s equation:

—y" +qy = Ay, (2)
the potential g being the periodic Ornstein—Ulenbeck process. We think of ¢ as being any
element in the set Q = C(S'), and impose in 2 the probability measure Q.. Let Ao(q)
denote the periodic groundstate of (2), with potential ¢. In [5] we prove the following:

See [9], or [6].
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Theorem 1 Under the transformation Q = X+ p’ + p?, the probability measure Qs, Te-
stricted to [Ng > A], is transformed into the measure dPyde, according to the following: If
¢ is a bounded measurable function on €2, then

0 m2 /
/ PdQ, = C/ / dN+p +pPe 2 JO+p +P2>2G(a,p’)dadPo(p’),
Po>A] HJI(p)

with C = \/%—Wsinh(%), p:a—i-fotp/, I(p) = —fol Otp’, and

G(a,p) = exp [/Ol(p’?’ — 2p2p’2)dt} sinh (/Olp> : (3)

Corollary 1 The distribution of \g under Q. is given by

o0 m2 /
QM >N =C / / e~z T4’ G, p)dad Py ().
H JI(p')

3. The new potentials

Let us consider the diffusion ¢ solving
dq = —m(q)dt + db,

where b is a standard Brownian motion under a probability measure P, and m is an
odd function, with m(q) > 0 for ¢ > 0 (to avoid explossion). Thus ¢ has associated the
infinitesimal generator
1 d? d
2 dg? "
under P. X
We denote by ) the probability measure under which ¢ is Brownian motion. Notice
that, for ¢(t) > 0,
t
q(t) = b(t) — b(to) — [ mlgs)ds < b(t) — b(to),
to
with tgp = max{s < t: Q(s) = 0}. Similarly, for ¢(¢) < 0,
t
q(t) = b(t) = b(to) — [ m(gs)ds = b(t) — b(to),
to

and therefore, in any case

< A >
lg(t)] < 20122% |b(t)|, for all t>0.

In particular ¢(t) is defined for all ¢ > 0.
Let ty =inf{t > 0:|q(t)] = N}. On [ty > t] we have

4 < N.
Jodx, lq(s)] <
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Since m(q) is bounded on [— N, N], we can apply Cameron—Martin to the process q(t Aty),
i.e. for any bounded ¢,

E5{¢(Q)X[tN2t]} = Ea{¢(Q)Z(t)X[tN2t}}7

Z(t) := exp [— /Otm(qs)dqs - %/Ot mQ(qs)dS} :

Since ty T 00, taking ¢ = 1 and using dominated convergence gives

E{2(t)} = M E{ZO)Xnzn} = Jm B {Xpe=n} = 1.

with

Thus, we can apply Cameron—Martin to the process ¢(t) itself.
Now we define a probability measure @), (under which ¢ will be periodic) by setting

2ol = ¢ [{get Q(””]}x
- C/{a—xéaw }

= C/EOO #(q + a)e~2 Jo Fla+a:)d ]

- \/7/¢(Q)6_2f0 Fladdsqy,,
T

where fi, is the circular Brownian motion measure, F(q) = —m/(q) + m?(¢q) and the
constant C'is to be determined. We want to have

/OO EY [e_% Io F(“+qs)d5] da < 0.

da

By Jensen’s inequality and Fubini’s theorem, it is enough that

/ e Wdy < o0, e / e2(m'=m?) < oo, (4)

—00 — 00

If that is the case, then
1
dQ. = Coe™ 2o F@)tsgy, (5)

-1
C():|:/€ Qf() QSdeM:| .

4. Distribution of )\ (Q)

We want to find the distribution of \y(q) with respect to the probability measure Q..
For this, we first express dQ. in terms of dadPy(p'). By the Cameron - Martin relation
obtained above, it is enough to find an expression for du, in terms of dadPy(p'). More
precisely, we consider the transformation

with

Q=\+p +p°
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but instead of @, we use .. The calculations are done in [5], obtaining

dp, = 2exp [ /0 1((p/)3 e (p/)z)dt} sinh ( /0 1 p> dadP,.

In other words, for ¢ satisfying [ |¢|du. < oo,
| d@dn =2 [ o0 + )G dadn,
[Mo>A] HJI(p)

with G(a,p’) given by

G(a,p) = exp Uol((p')?’ — 2p? (p/)z)dt] sinh </01p> .

It follows that

o0

/ $(g) dQ.. = 20y / d(N)e2 o FasG(a, p)dady,
[Ao>A H JI(p")

where we have written ¢(\) for ¢(A + p' + p?), and similarly for F. In particular, the
following theorem follows.

Theorem 2 Let m(q) be an odd function such that m(q) > 0 for ¢ > 0, and satisfying
(4). If Q« is given by (5), then the distribution function Q.«[No > A of Ao(Q) under Q. is
given by

00 1
Q« Mo > A = 200/ / exp [—1/ FO\+pl +pH)ds| G(a,p)dadPy.
H 1) 2 Jo

5. Joint Distribution

Consider the periodic diffusion coming from the infinitesimal operator

e
2 dg? ma dq’

under the probability measure @), defined by

SR ,
dQ. = Cpexp —5/ F(Qs)ds| dPx, (6)

L 0 i

as explained in the last section, with F = —m’ +m? and

- 1 -
Gyt = /exp —%/ F(Qs)ds| dPx.
L 0 J

We consider the transformation (Q,a) < (p,a, \) given by

1 ¢
Q=X\+p +p? a:/ <a—|—/p’>dt.
0 0
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To get the relation between dP.da and dPy(p')dad), it is enough to take care of the
Jacobian. But this is done in the same way as for white noise (see [7]). It follows that, if
[19(Q, a)|dP.da < oo, then?

/qﬁdP*da: /H/ [/qﬁ()\—i-p/—i-pz,/p)d)\} E(a,p)e /PdadPy, (7)

with p = a + fgp/ and
1
Blas) =exp | [ - 28] 400
0
Here we use the notation

1 1
A(p):/o e=2Jo pdgn/0 e2JoPdy.

Notice that o = I(p') if and only if folp =
By (6) and (7), if [|¢(Q,a)|dQ.da < oo, then

/90 dQ*da:CO/H/ U@( e=2 ] FOx d)\] ~JIPE(a,p)dadPy,

where ¢()\) denotes p(A +p' + p?, [p) and F(\) denotes F(\ + pl, + p2). In particular, for
the classical Ornstein—Uhlenbeck case,

/90 dQda = / / [/ JOtp'+p%)? d/\} e_pr(oz,p')dozdPo, (8)
with C = \/gsinh (%)
6. Induced Measure and Density of \y(Q)

The results of the last section will be used to find the density of A\o(Q) under P, and
Q+«. We first notice that the choice ¢(Q) = ¢(Q)x[o<i<p) in (7) gives

/godP / /+h U oA+’ —I—p)d)\] =132 B(a, f )dadPy

and, as h — 0,
— > / 2 /
/w(@)dP* = /H (/_OO eA+p +p )dA> E(p')dP.

Here, E(p') .= E(I(p'),p’) and p = I(p') + f
Since fol Q is Lebesgue - dlstrlbuted under P*, taking ¢ = x[o< [Q<1] produces

/ E(p)dPy = 1, )
H

%In the following dPy will denote dPp(p’).
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1 1 1
/ exp [/ (p/?’ - 2p2p'2)] </ e 2o pda:/ 2o pdx) dPy = 1.
H 0 0 0

Since Ag(A +p' 4+ p?) = X when [ p =0, we also have

ie.,

[ #@uiersair. = [ ( [ ey +p2>dx> B(/)dPy
m

for —oo < pu < p < oo. This easily implies the following expression for the measure P.'
induced by P, on [A\g = pul:

/ (Q)dPl = / p(p+p +pH)E()dP.
[Ao=p] H

Because of (9), taking ¢ = 1 implies:
Proposition. \y(Q) is Lebesgue—distributed under P,. The corresponding formulas for

Q. are
[e@ae.~co | [ [o0e I FOaN] E)ar (10)

and
1

| el@aar=cy [ se i FOE ) an,
[Ao=p]

H

In particular, the density of A\g under @, is

£ :Co/He‘%fF(“*p'Wz)E(p’) dP.

For the classical Ornstein—Uhlenbeck case,

~ 2 m m2 1 ’ 212
— /2 e 5 == [o (utp"+p?) /
/[AO:M} QG \/;Slnh ( 2 ) /H Plujem o B')dh
and

m2 N ’
flp) = \/gsinh(%) /H e 2 o (utp +°)? g (p') APy

7. Some identities

Now we deduce a series of identities involving the measures ()., P, and Fy, based on
the results of previous sections.
Let us start by applying (7) to ¢(Q,a) = ¥(Q) e~%/2 The result is

— D / —s(Ip*=[p /
var [ v, /H /R [ /R e )dA] e E(a,p/)dadPy,
which for ¢(Q) = x[o< [ @<y gives

/ /OO e‘%(fp)z_pr(oz,p')dadPo = V2.
H J—-oc0
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More generally,

/H /_Z @ </p> e—pr(a,p’)dadPo = /_Z o(z)dz.

Compare with (9). Next, take ¢ = ¢ ([ Q) in (10) to obtain

L, ( / p) Q. =Cy [ [ Ir <A +f p2> et F WA} E@)aR. (1)

In the Ornstein—Uhlenbeck, with ¢ = 1, this gives

7” [fp +/1p'? (pr)z] / _ m
/H E(p)dPy = 2sinh (%)’

and (11) reduces to

ie.,

[ o) = g o5

fol Q ~ (0,m™2) under Q. In a similar way, for ¢(Q,a) ([ Q) (8),

// [t () ]w</P>e_pr(a’p/)dadP°:%%h(m)/r@%
2

These identities seem to be very useful as a tool in solving some open problems on asymp-
totic behaviour of the density as |A\| — oco.
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