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Abstract

Gross primary production (GPP) in climate change studies with multi-
species and elevation variables are difficult to measure and simulate. Mod-
els tend to provide a representation of dynamic process through long-term
analysis by using generalized parameterizations. Even, current approaches
of modelling do not contemplate easily the variation of GPP at different el-
evations for different vegetation types in regions like páramos, mainly due
to data unavailability. In these models information from cells is commonly
averaged, and therefore average elevation, ecophysiology of vegetation, as
well as other parameters is generalized. The vegetation model BIOME-
BGC was applied to the Ecuadorian Andean region for elevations greater
than 4000 masl with the presence of typical vegetation of páramo for 10
years of simulation (period 2000-2009). An estimation of the difference of
GPP obtained using a generalized altitude and predominant type of vege-
tation could lead to a better estimation of the uncertainty in the magnitude
of the errors in global climate models. This research explores GPP from
3 different altitudes and 3 vegetation types against 2 main climate drivers
(Short Wave Radiation and Vapor Pressure Deficit). Since it is impor-
tant to measure the possible errors or difference in the use of averaged
meteorological and ecophysiological data, here we present a multivariate
analysis of the dynamic difference of GPP in time, relative to an altitude
and type of vegetation. A copula multivariable model allows us to identify
and classify the changes in GPP per type of vegetation and altitude. The
Frank copula model of joint distributions was our best fit between GPP and
climate drivers and it allowed us to understand better the dependency of
the variables. These results can explore extreme situations where averaged
simplified approaches could mislead. The change of GPP over time is es-
sential for future climate scenarios of the ecosystem storage and release
of carbon to the atmosphere. Our findings suggest that a classification of
the difference is highly important to be extended to cells that have similar
properties.
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Resumen

La producción primaria (GPP) es difícil de medir y simular en estudios
de cambio climático con múltiples especies de vegetación y con variabili-
dad en elevación. Los modelos tienden a proveer una representación de los
procesos dinámicos a través de análisis a largo plazo usando parametriza-
ciones generalizadas. Incluso métodos actualizados de modelación no
contemplan fácilmente la variación de GPP a diferentes elevaciones y para
diferentes tipos de vegetación en regiones como los páramos, debido prin-
cipalmente a la inexistencia de datos. En estos modelos, la información
de las celdas son comúnmente promediadas y por lo tanto factores como
la elevación media,eco-fisiología de la vegetación y otros parámetros son
generalizados. El modelo de vegetación BIOME-BGC fue aplicado en un
área de estudio dentro de la región andina Ecuatoriana a elevaciones supe-
riores a los 4000 msnm donde existe una presencia típica de vegetación de
páramo para 10 años de simulación (periodo 2000-2009). La estimación
de la diferencia de la GPP obtenida usando una generalización de altura y
tipo de vegetación predominante puede conducir a una mejor estimación
de la incertidumbre en la magnitud de los errores en modelos climáticos
globales. Este estudio explora la relación entre la GPP de tres tipos de ve-
getación agrupados de acuerdo a sus formas de crecimiento a tres rangos
altitudinales y dos factores climáticos (Radiación de onda corta y deficien-
cia de presión de vapor). Debido a la importancia de la medición de posi-
bles errores o las diferencias en el uso de valores promedio de datos mete-
orológicos e ecofisiológicos, aquí presentamos un análisis multivariado de
la diferencia dinámica de la GPP en el tiempo con respecto al rango altitu-
dinal y al tipo de vegetación. El modelo multivariable Copula nos permite
identificar y clasificar los cambios de GPP por tipo de vegetación y por
rango altitudinal. El modelo cópula distribuido Frank fue el que mejor
se acopló entre la GPP y las variables climáticas y nos permitió entender
mejor la dependencia entre estas variables. Los resultados podrían explo-
rar situaciones extremas donde estrategias simplificadas promedio podrían
confundir. El cambio de GPP en el tiempo es esencial para futuros escena-
rios climáticos del almacenamiento y liberación de carbón del ecosistema
hacia la atmósfera. Nuestros resultados sugieren que la clasificación de
esta diferencia es muy importante que sea extendida a celdas que tienen
propiedades similares.

Palabras clave: clasificación multivariada; cópula; BIOME-BGC; GPP; páramos.
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1 Introduction

Many studies have demonstrated that an increased in atmospheric carbon diox-
ide (CO2) in combination with global climate change might have serious conse-
quences in the growth of terrestrial vegetation [40]. The Earth Observing System
(EOS) of the U.S. National Aeronautics and Space Administration (NASA) is
currently estimating the spatial variability of net primary production (NPP) and
gross primary production (GPP) of the globe at 1-km spatial resolution for the
last 14 years [29]. However, these estimations hardly contemplate the vegeta-
tion heterogeneity and the spatial variation of meteorological variables that are
different within 1-km cell specifically for mountainous regions driven by micro-
climates. The estimates of GPP define more accurately the terrestrial CO2 fluxes
than the normalized difference vegetation indexes (NDVI) currently used [29].
The NPP and GPP products are of great value in our understanding on terrestrial
and atmospheric carbon cycling dynamics.

Ecosystem terrestrial models deal with a certain degree of complexity not
only to their inner processes but also to the amount of eco-physiological param-
eters needed to accurately reproduce the fluxes and states of water and nutrients
of a defined biome [34, 31, 32, 42]. These models alone or in combination with
satellite imagery have been successfully applied in the quantification of net pri-
mary production (NPP) and gross primary production (GPP) across the world
at different spatial and temporal scales [20, 46, 16, 38]. These studies compare
their simulations with measurements to evaluate the performance of the model
and determine whether it is able to capture the dynamic process of the land car-
bon cycle. However, measurements are also susceptible to uncertainties due to
the wide variety of measuring instruments, operator techniques, statistical anal-
ysis of a set of measurements [1] and the effects of variability and environmental
heterogeneity characteristic of mountainous terrains [8]. For instance, the in-
formation required for tropical grasslands is not always readily accessible [9]
and due to budget and time limitations measured values are usually averaged
or generalized leading to a homogeneous parameterization that may distort the
outcomes.

The use of mathematical tools that includes statistical probabilistic functions
is widely applied to assess the spatial and temporal variability of environmen-
tal variables that are not linearly correlated in nature [6, 3]. In engineering,
copulas are used in environmental space-time processes and hydrological mod-
elling [45, 11].The copula function constructs a required joint distribution that
relates the dependence of random variables and their uniform marginals [0,1]
[10, 5, 13]. In this article we analyze the GPP changes due to climatic variations
taking into account vegetation heterogeneity along an altitudinal gradient. This
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will be compared to a GPP estimated on an averaged single measure to classify
possible errors. Finally, the application of a Copula-based bivariate distribution
will be used to assess undesirable extreme GPP production due to changes in
climatic variables in the region.

2 Data sources

2.1 Study area

A typical region in the Ecuadorian Andes region was selected to be able to rep-
resent the Andean GPP changes. "Los Crespos - Humbolt" (LCH) basin was
selected and it is located in the southwestern side of the volcano Antisana. It has
an area of 15.2 km2, of which 16% is covered by glacier, 17% by moraine and
68% with páramo vegetation and extends from 4010 masl to 5000 masl (Fig-
ure 1). This area is less than 1% in proportion to 50x50 km cell of most global
climate models.
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Figure 1: Location of the study sites in the "Los Crespos - Humbolt" Basin, Ecuador.
(Source: ASTER Satellite Image, 15m resolution). A total of 27 sampling
plots distributed in three altitudinal ranges from 4010 masl to 4700 masl.

Precipitation range is 800-1200 mm/yr, monthly average temperature is 6◦C
and average relative humidity is around 80%. Typical páramo vegetation covers
the entire surface until the beginning of the moraine, which is mainly located at
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elevations above 4700 masl. The main vegetation in the lower and mid catchment
is dominated by tussock grasses (TU) (Calamagrostis intermedia) and acaules-
cent rosettes (AR) (Werneria nubigena, Hypochaeris sessiliflora). Near flood
zones and streams there is a strong dominance of cushions (CU) (Azorrella Pe-
dunculata) [22].

2.2 Meteorological data

Daily meteorological data were derived from IRD (Institut de recherche pour
le développement - Ecuador) and INAMHI (Instituto Nacional de Meteorología
e Hidrología en Ecuador) databases. Distinctively, daily total precipitation and
daily maximum and minimum temperatures were collected from 2 stations, one
located at 4000 masl (outlet of the basin) and the other at 4785 masl (upper basin)
for the years 2000-2009 (Annex Table A1).

2.3 Plant ecophysiological parameters

From earlier vegetation inventories [22], we identified plant species that were
classified based on their growth forms [28] with large differences in their car-
bon, nitrogen concentration and main ecophysiological characteristics. These
parameters were adequately treated for each growth form (TU, AR, CU) at three
different elevations (R1: 4000-4200 masl; R2: 4200-4400 masl; R3: 4400-4600
masl). Other additional information was derived from literature search and cal-
culated mean and standard deviation (Annex Table A2).

2.4 Topographic and soil-related data

A Digital Terrain Model (DTM) of the study area with 20m resolution was
derived from the EPMAPS cartographic database. The INIGEMM (Instituto
Nacional Geológico Minero Metalúrgico del Ecuador) provided and processed
the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiome-
ter) satellite image at 15m resolution for NDVI (Normalized Difference Vege-
tation Index) calculations that describe the distribution of the vegetation along
the catchment. Soil information was derived from the field measurements car-
ried out during November 2012 - January 2013, which provides soil depth and
texture expressed in percentage of sand, silt and clay. The percentages of veg-
etation coverage and climate parameters at each elevation range are shown in
Annex Table A1.
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3 Materials and methods

3.1 Modelling strategy

BIOME-BGC is a biogeochemical and eco-physiological model (version 4.2
[34, 35]) that uses daily meteorological data and general stand soil information
(Figure 2) to simulate the energy, carbon, nitrogen and water cycles. BIOME-
BGC requires standard meteorological data as the main drivers for the ecosys-
tem activity [39] namely maximum and minimum temperature, precipitation,
incoming shortwave radiation, vapour pressure deficit. The last two parameters
were generated by using the mountain climate simulator MT-CLIMB version 4.3
[36, 35] that estimate the near surface parameters based on nearby observations
of temperature and precipitation. The model uses 34 parameters within the main
categories for the plant functional type [43] and it was applied independently for
each of the growth forms (as separate simulations) along the altitudinal gradient
for 10 years of simulation (2000–2009).

Daily meteorological

data
Soil information

Land surface

dat a

Ecophysiology

data

BIOME - BGC

(a) Spin-up simulation (max number of years =
6000). Daily outputs: NPP,

GPP, allocations, etc.

Copulas

Analysis

Classification of

errors

Model Run

Daily meteorological

data
Soil information

Land surface

dat a

BIOME - BGC

Ecophysiology

data

(b) Model run (10 years).

Figure 2: Simplified scheme of the modelling and analysis steps followed to obtain the
classification of errors starting from the input data.

The first step of the model was to perform a spin-up running to get the model
into equilibrium [37] and estimate the steady state of the system, typically 3000-
4800 yr (Figure 2) through the 10-year daily driver record. The spin-up runs
simulate a hypothetical steady state for primary production in a preindustrial
condition. The optimized GPP parameters are responsive to soil nutrient status,
CO2 atmospheric concentration and the rate of nitrogen deposition, which in
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turn have effects on soil organic matter and plant biomass states. Further inner
processes can be found in detailed in the research done by [34].

3.2 Simulation of GPP

BIOME-BGC simulates gross primary production (GPP), which is based on the
Farquhar photosynthesis model [Farquhar et al.(1980)] that takes into account
photosynthetically active radiation, atmospheric carbon dioxide concentration,
air temperature, vapour pressure deficit, precipitation, atmospheric nitrogen de-
position, leaf area index and available nitrogen content in soil. Photosynthesis
is also driven by indirect controls that operate through the influence of environ-
mental conditions on the mineralization of nitrogen due to litter and soil organic
matter decomposition [29]. The GPP represents the total amount of CO2 that is
fixed by the plants through photosynthesis and it has proved to be a good indica-
tor of ecosystem’s health. For instance the spatial variability of GPP ranges from
2400 gC/m2/yr in tropical evergreen forests to less than 30 gC/m2/yr in temper-
ate desserts [15]. The GPP was estimated for each growth form at three different
altitudes to check individual CO2 assimilation. One-way analysis of variance
(ANOVA) was applied to test the differences of growth forms of vegetation and
altitudinal ranges in the GPP.

3.3 Error analysis of GPP

We call error (Err) to the absolute difference of GPP of the dominant vegetation
(tussocks) in an averaged elevation from now on GPPREF , and the near real
situation of having a vegetation heterogeneity clustered in three growth forms at
each altitudinal range from now on GPPR,

ErrR(t) = GPPREF (t)−GPPR(t) (1)

where, R is the altitudinal range (4100 m, 4300 m, 4500 m), and t the time. The
near real GPP that is taking place in each altitudinal range (R) was calculated
considering the percentage of coverage of each plant as follows:

GPPR(t) =
∑
GF

(GPPGF ∗%covGF ). (2)

The GF is the growth form vegetation represented by tussock TU, acaules-
cent rossette AR and cushion CU. The %cov is the percentage of coverage. The
errors at each altitudinal range (ErrR) were classified based on four quantiles (q)
as follows: Class 1 when ErrR <q(1), Class 2 when q(1) ≤ ErrR <q(2), Class 3
when q(2) ≤ ErrR <q(3), and Class 4 when ErrR ≥ q(3).
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3.4 Copula analysis and classification

Copula was first introduced by [33], the theorem was mainly used in the theory
of probabilistic metric spaces, then it was used to incorporate the information on
the dependence structure between two or more random variables. Basically [33]
showed a bivariate joint distribution H with margins F(x) and G(y) related with
a copula function C, then

H(x, y) = C(F (x), G(y)). (3)

Out of the several families of copulas functions for statistical modelling,
the ones presented below were selected as the most widely used (Table 1) [41].
Figure 3 shows the main steps used to test the copulas functions and based on
the maximum pseudo-likelihood select which family to use that fit the data. All
tests were conducted using R [26], using the copula package [14]. We performed
a classification based on groups of the same probability for the transformed data
of GPP against SWR and VPD, respectively.

Figure 3: Flow chart scheme of the procedure of copulas family selection.
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Copulafamily FunctionC(µ1, µ2) θ − domain

Gumbel µ1µ2(1 + θ(1− µ1)(1− µ2)) −1 ≤ θ ≤ +1

Frank −1

9
log

(
1 +

(e−θµ1 − 1)(e−θµ2 − 1)

e−θ − 1

)
θ ∈ (−∞,∞)

Normal ϕG[ϕ
−1(µ1), ϕ

−1(µ2); θ] −1 ≤ θ ≤ +1

Clayton (µ−θ
1 + µ−θ

2 − 1)−1/θ θ ∈ (0,∞)

Table 1: Copula functions families and the range of parameter Φ.

4 Results and discussion

4.1 Daily estimation of GPP

The BIOME-BGC simulated the GPP variation along an altitudinal gradient for
each growth form. The GPP decreases from lower to higher altitudes (ANOVA
F = 1387.02, df=2, p <0.001) (Figure 4, panel a) and also differ from one
growth form to another (ANOVA F= 2246.38, df=2, p <0.001), being the tussock
(TU) the one with higher GPP (Figure 4, panel b). On average, results from the
simulation of the GPP are high for low elevations (0.44 ± 0.17 gC/m2/day) and
low for higher elevations (0.35 ± 0.13 gC/m2/day). We can attribute significant
GPP variation along an altitudinal gradient since elevations are characterized
by the climatology. In addition, the meteorological variables indirectly control
the decomposition rates of organic matter and litter, which differs from plant to
plant. These decomposition rates and soil characteristics restrict the mineraliza-
tion of nitrogen, which in turn influences in the GPP estimations. Low GPP is
associated to slow nutrient cycling due to low rates of decomposition of cold
soils (annual mean temperature of R3 is 4.82 ± 0.37 ◦C). Figure 4, panels c &
d show a two-way interaction plot to depict the main effects of two indepen-
dent variables and their interaction. The analysis revealed similar information
as above, where the altitudinal ranges (R1, R2, R3) have a main effect on the
GPP for the three growth forms of vegetation (TU, AR, CU) and vice versa. The
mean value of GPP in TU shows higher and significant values in comparison to
the AR and CU along the altitudinal gradient.

The mean values of GPP for AR and CU are within the same range and it
shows interaction in higher elevations. The stratification of the ecosystem in
three altitudinal ranges shows differences in individual contributions to the over-
all GPP of the basin. We cannot attribute the GPP variations to the model input
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Figure 4: Boxplots (95% confidence interval) showing the GPP variation in (a) Growth
forms of vegetation and (b) altitudinal ranges. Interaction plots of (c) growth
form and (d) altitudinal ranges.

data only. The catchment, as part of the Andean highlands, is a very heteroge-
neous landscape and moisture conditions as a result of localized precipitation
and soil features diverge at different locations.

4.2 GPP response to meteorology

The model behaviour in terms of daily and interannual fluctuations suggests the
sensitivity to the meteorological conditions. The sensitivity of GPP is difficult
to attribute to a single meteorological variable since most of them are dependent
of each other [17]. However, we consider it crucial to investigate the strength
and relationship between each meteorological variable and GPP variability for
future trends in climate variation. Figure 5 shows the GPP model simulations
and the daily meteorological variables at 4100 masl for 10 years period simula-
tion. It shows the sensitivity of TU along the simulation and its large amplitude
and frequency (<standard deviation) in comparison to the other growth forms.
We calculate Spearman’s rho correlation coefficient to check possible relation-
ships between GPP and meteorological variables on a monthly basis. For all
three growth forms of vegetation in the low and mid elevations, the GPP is pos-
itively correlated to SWR (rho >0.52, p <0.05) to VPD (rho >0.65, p <0.01),
mean and maximum temperature (rho >0.60, p <0.05 and rho >0.64, p <0.01

Rev.Mate.Teor.Aplic. (ISSN 1409-2433) Vol. 22(2): 369–394, July 2015



380 V.MINAYA – G.CORZO – J.V.D.KWAST – R.GALÁRRAGA – A.MYNETT

respectively). Conversely, for higher elevations no good association between
variables was found showing a total independence of variables. The GPP is
more responsive to SWR, VPD and temperature as the main components for
photosynthesis to produce chemical energy.

4.3 Order of errors

Table 2 summarizes the comparison between the reference GPPREF and the near
real GPPR of each altitudinal range. There is an overestimation of GPP for all
cases and it increases towards higher elevations. The most noticeable difference
is visible in the higher altitudinal range, where the use of a reference value leads
to an overestimation of more than 30%. The total overestimation in 10 years is
5038.57 [tonC] if the entire study basin is accounted for this overestimation. This
value represents 24.1% more than what it has already been produced from 2000
to 2009. These results not only imply that there are substantial inefficiencies in
the GPP calculation in the Andean grasslands due to generalized parameteriza-
tions but the implications in climate trends of concluding that the ecosystem is
fixing more CO2 than it actually does.

Setup
Area GPP Difference

from refer-
ence

Difference
from ref-
erence

10-year dif-
ference from
reference

[km2] [kgC/m2/day] [kgC/m2/day] % [TonC]
R1 3.04 0.463 0.056 10.85 625.30
R2 4.16 0.395 0.131 24.85 1984.15
R3 5.34 0.240 0.125 34.15 2429.12

Table 2: Gross primary production (GPP) of LCH basin at three altitudinal ranges (in-
cluding all three growth forms of vegetation) in comparison to reference (Tus-
sock as the main growth form at an averaged elevation) (2000 - 2009 Mean).

After we classified the error classes based on their quantiles for each al-
titudinal range, we can see in Figure 6 (panel a) that the difference between
the GPPREF and GPPR is low. This means that the errors produced by taking
GPPREF instead of GPPR could be accepted if we consider that the range of
errors could be negligible if those lie up to q(2). In the same figure in panel b)
errors increase for most of the years except for 2005 and 2006, where we assume
these could be related to climate drivers that make this difference imperceptible.
These errors expand even more in higher elevations (Figure 6 panel c); however
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it could be seen a homogeneity in their amplitudes along the time series. Differ-
ent behaviours can be seen when comparing the GPP with the climatic drivers
SWR and VPD in the three altitudinal ranges (Figure 7). At altitudinal range 1
(R1), the variation in GPP between 0.1x10−3 and 0.5x10−3 can be of both error
class 1 and 2 (Figure 7 panel a&d). Events of GPP higher than 0.6x10−3 are not
related to the variation of the climate variables. An overlap of error classes 1, 2
and 3 could be seen for altitudinal range 2 (R2) (Figure 7 panel b&e), suggesting
a need for another dimension (variable) that could identify what characterizes
this range of variation. For altitudinal range 3 (R3) there is a complete overlap
of all error classes that implies large errors throughout the GPP (Figure 7 panel
c&f). It can be seen a concentration of these large errors when GPP is between
0.5 and 1.5 indicating a higher deviation between the mean and the region.

4.4 Copula-based models

Table 3 summarizes the copula family chosen for separate simulations of GPP
of plant vegetation and altitudinal ranges. The maximum likelihood is not al-
ways generated from the same copula family, however it can be noticed that
the prevailing copulas for the comparison between GPP and the meteorological
variables are Frank and Normal. These type of copulas are widely applied due
to their strength to emphasize the correlation among large losses defined by the
tails of the distributions. We also applied this approach in the combined GPP
for each altitudinal range and the maximum likelihood function favors the Frank
copula, which stood out from the rest for all bivariate distributions. As a matter
of exercise we only show the results from the altitudinal range R2 against the two
main climate drivers SWR and VPD. Figure 8 panel a & b shows a clear corre-
lation of the extreme tails but not elsewhere in the distribution. A Frank copula
matches these aspects of the data in the probability density function (PDF) panel
c & d and the cumulative distribution function (CDF) fitted our data suggesting
a well chosen copula family (panel e & f). The copulas have demonstrated to
be a powerful tool and it helps to easily identify areas of GPP vs climate drivers
that can be translated to probabilities of sensitive and unresponsive biological
production. The point color on the CDF indicates groups of the same range of
probability of the combination GPP-SWR (panel g) and GPP-VPD (panel h).
The red color indicates that the probability of having that association of GPP vs
the meteorological drivers is very high.

Rev.Mate.Teor.Aplic. (ISSN 1409-2433) Vol. 22(2): 369–394, July 2015



382 V.MINAYA – G.CORZO – J.V.D.KWAST – R.GALÁRRAGA – A.MYNETT

a)

b)

c)

d)

Figure 5: GPP and meteorological daily variations at elevation R1 (4000-4200 masl) in
10 years (2000 - 2010). (a), Daily outputs of GPP for three growth forms
of vegetation (b), Short wave radiation (SWR) and vapour pressure deficit
(VPD) (c), Temperature max, min and mean; and (d), precipitation.
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a)

b)

c)

Figure 6: Error classification based on quartiles for three altitudinal ranges: (a)
R1(4000-4200 masl), (b) R2(4200-4400 masl), and (c) R3(4400-4600 masl).
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a) b)

c) d)

e) f)

Figure 7: GPP vs meteorological variables: short wave radiation (SWR) and vapour
pressure deficit (VPD). The classification is based on quartiles at R1: panels
a, d), at R2: panels b, e), and at R3: panels c, f).
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Table 3: Copula family chosen for individual simulation that combines each growth
form of vegetation and altitudinal ranges.
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a) b)

c) d)

e) f)

g) h)

Figure 8: Analysis of GPP vs SWR and VPD in altitudinal range R2. Scatter plots of
transformed data: panels a, b. Probability density function (PDF) of Frank
Copulas: panels c, d. Cumulative density function (CDF) that fit the data:
panels e, f. Clustering of groups with the same probability: panels: g,h.
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5 Conclusions

In this paper a methodology to analyze the difference between carbon flux sim-
ulations based on averaged eco-physiological parameters (dominant vegetation
and mean elevation) with altitude and growth forms of vegetation variations has
been developed. In this Andean grassland region parameters in a landscape veg-
etation were heterogeneous and this effort has been neglected in the past due to
manifold constrains but it is necessary to identify GPP deviations along environ-
mental and ecophysiological gradients to better represent the terrestrial carbon
assimilation by Andean grasslands. We found a clear overestimation of 24% in
average caused by the use of generalized parameters for this region. The large
variation in GPP suggests a relationship of a joint effect of radiation and VPD,
which are non-linear responses due to the interaction with nitrogen dynamics
in the model. However, the copulas bivariate analysis helped, at least partly, to
classify expected responses of GPP in dependence with a specific range of these
climatic drivers. The overall scope of this work will include a hydrological study
since plant production is limited by water availability. Microclimates are driven
by the ENSO phenomena which can determine a variation of GPP during dry
seasons.
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Annex A

Parameter R1 R2 R3 Reference
Site and soil
Elevation (m) 4100 4300 4500 -
Site latitude (◦) -0.4665 -
Albedo (DIM) 0.1723 0.1759 0.1753 -
Effective soil depth
(m)

1.7 1 .5 [22]

Sand:silt:clay ratio 19:66:15 24:59:17 58:20:22 [22]
Nitrogen deposi-
tion

0.000389 [25]

kgNm−2year−1

Nitrogen fixation 0.0003 [21]
(kgNm−2year−1) [4]
Meteorological
data
Mean annual air
temperature (◦C)

7.31±1.44 6.53±0.35 4.82±0.37 -

Mean annual pre-
cipitation (mm)

925.1±100.8 1337.4± 196.0 1176.2±184.7 -

Vegetation
% coverage TU 59.65 56.61 45.38 -
% coverage AR 28.79 36.89 20.61 -
% coverage CU 7.03 3.2 1.1 -
% coverage rock 4.53 3.29 32.91 -

Table A1: Meteorological data summarize the climate file (annual means ± SD) based
on 10 years of daily data (2000-2009). Where no reference is given, the value
given was obtained from different sources (see text). Altitudinal ranges are
R1: 4000-4200 masl; R2: 4200-4400 masl; R3: 4400-4600 masl.
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Parameter TU AR CU Reference
Turnover and mortality parameters
Annual leaf & fine root turnover 1.84±0.18 1.44±0.35 1.13±0.16 [7]
Annual whole plant mortality 0.25±0.08 [12]
Current growth proportion 0.02±0.01 0.06±0.00 0.000128 TU:[30]

AR:[7]
CU:[27]

Allocation parameters
Fine root C: leaf C 0.54±0.10 0.68±0.02 0.88±0.06 [22]
Carbon to nitrogen parameters
C:N of leaves 76.19±11.39 26.04±2.48 24.36±2.16 [22]
C:N of leaf litter 121.17±18.12 41.41±3.95 38.74±3.43 [22]
C:N roots 25.01±1.40 28.52±4.29 30.58±7.95 [22]
Labile, cellulose, and lignin parameters
Litter labile 0.51±0.01 0.51±0.04 0.42±0.02 [22]
Litter cellulose 0.28±0.02 0.17±0.05 0.22±0.05 [22]
Litter lignin 0.21±0.03 0.32±0.07 0.36±0.06 [22]
Root labile 0.52±0.06 0.54±0.02 0.54±0.05 [22]
Root cellulose 0.20±0.05 0.17±0.06 0.19±0.06 [22]
Root lignin 0.28±0.08 0.29±0.03 0.27±0.03 [22]
Canopy parameters
Water interception (LAI−1day−1) 0.0225 [43]
Light extinction 0.48 [43]
SLA (projected area basis) (m2kg−1C) 15.08±5.85 11.80±0.84 13.82±1.62 [43]
Shaded/sunlit SLA 2.0 [43]
All-sided: projected leaf area 2.0 [43]
Leaf N in Rubisco (%) 2.20±0.70 0.34±0.03 0.37±0.07 [44]
Maximum gs(mms

−1) 0.011 0.02 0.0217 TU: [18]
AR & CU: [2]

Cuticular conductance (mm s−1) 0.00011 0.0002 0.00022 TU: [18]
AR & CU: [2]

Boundary layer conductance (mm s−1) 0.022 0.04 0.03 [24]
ψL start of gs reduction (MPa) -0.73 [43]
ψL complete of gs reduction (MPa) -2.7 [43]
VPD start of gs reduction (Pa) 1000 [43]
VPD complete of gs reduction (Pa) 5000 [43]

Table A2: Simulation ecophysiological parameters by growth form (TU: tussock, AR:
acaulescent rosettes, CU: cushion). Abbreviations: C= carbon; N= nitrogen;
LAI: leaf area index; SLA= specific leaf area; gs= stomatal conductance;
ψL= leaf water potential; and VPD= vapour pressure deficit.
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