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Abstract

The results obtained by analyzing signals with the Square Wave Method
(SWM) introduced previously can be presented in the frequency domain
clearly and precisely by using the Square Wave Transform (SWT) de-
scribed here. As an example, the SWT is used to analyze a sequence
of samples (that is, of measured values) taken from an electroencephalo-
graphic recording. A computational tool, available at
www.appliedmathgroup.org/, has been developed and may be used
to obtain automatically the SWTs of sequences of samples taken from reg-
isters of interest for biomedical purposes, such as those ofan EEG or an
ECG.

Keywords: signal analysis; square wave method; square wave transform.

Resumen

Los resultados obtenidos al analizar señales con el Método de las On-
das Cuadradas (Square Wave Method, SWM) —previamente introducido—
pueden ser presentados en el dominio de la frecuencia de manera clara,
precisa y concisa mediante el uso de la Transformada de las Ondas Cua-
dradas (Square Wave Transform, SWT). Se caracteriza la SWT y, como
ejemplo, se la utiliza para analizar una secuencia de muestras (es decir, de
valores medidos) tomadas de un registro electroencefalográfico. Enwww.
appliedmathgroup.org, se encuentra disponible un recurso com-
putacional que posibilita obtener, de manera automatizada, las SWT de
secuencias de muestras tomadas de registros de interés biomédico como el
EEG y el ECG, entre otros.

Palabras clave: análisis de señales; método de las ondas cuadradas; transfor-
mada de las ondas cuadradas.

Mathematics Subject Classification:94A12, 65F99.

1 Introduction

Consideration was previously given to the analysis of functions of one variable
using the Square Wave Method (SWM) [4]. This method, which will be reviewed
briefly in the following section, was generalized for functions of two variables
and applied to the analysis of images [5].

The objective of this article is to specify how the results obtained by analyz-
ing signals with the SWM can be presented in the frequency domain clearly and
concisely, using the mathematical process described below: the Square Wave
Transform (SWT).

A preliminary version of this article was made available on arXiv [6].
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2 Brief review of the application of the SWM to the
analysis of functions of one variable

Given that this article is devoted to the analysis of signals, it will be considered
that the independent variable is time (t).

Let f(t) be a function of a variablet, which in a given interval∆t, satisfies
the conditions of Dirichlet [2]: (1) In the interval∆t, the functionf(t) to be
analyzed must have a finite number of relative maximums and minimums; (2)
in that interval it also must have a finite number of points of discontinuity; and
(3) for any instant of∆t, f(t) must have a finite value. That function can then
be approximated in that interval by means of a particular sum of trains of square
waves. The use of the SWM makes it possible to specify these trains of square
waves unambiguously.

Consider, for example, the functionf(t), as indicated below:

f(t) = 3 sin(2π · 5 · t) + 4 sin(2π · 7 · t); 0 ≤ t ≤ 1 s. (1)

In figure 1,f(t) is shown for the interval specified in (1).

Figure 1: f(t) = 3 sin(2π · 5 · t) + 4 sin(2π · 7 · t); 0 ≤ t ≤ 1 s.

Note that the interval oft (∆t), in whichf(t) will be analyzed, has a length
of 1 second (1 s):∆t = (1− 0) s = 1 s.

First, an explanation will be given about how to proceed if one wants to ob-
tain an approximation tof(t), in the interval∆t specified in (1), composed of
the sum of 10 trains of square waves. The interval∆t is then divided into a num-
ber of sub-intervals – of equal length – which is the same as the number of trains
of square waves. In this case, there will be 10 sub-intervals. The approxima-
tion to f(t) to be obtained in interval∆t will be the sum of 10 trains of square
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waves:S1, S2, S3, . . . ,S9, andS10. The first of the trains of square waves will
be referred to byS1, the second byS2, and so on.

Each of these trains of wavesSi, for i = 1, 2, 3, . . . , 9 and10, will be char-
acterized by a certain frequencyfi (that is, the number of waves in the train of
square waves considered which is contained in the unit of time), and a certain
coefficientCi whose absolute value is the amplitude of the corresponding train.

For the case considered here, a description will be provided below of how the
amplitudes corresponding to the different trains of square waves are determined
(see figure 2).

Figure 2: How to apply the SWM to the analysis of the function represented in figure 1.
(See indications in text.)

The vertical arrow pointing down at the right of figure 2 indicates how to
add the terms corresponding to each of the 10 sub-intervals of∆t. This proce-
dure will make it possible to compute the values of the coefficientsC1, C2, C3,
. . . , C9, andC10 shown in figure 2. First, however, indications will be given
about how to compute the frequenciesf1, f2, f3, . . . ,f9, andf10 corresponding
respectively to the square wave trainsS1, S2, S3, . . . ,S9, andS10.

Each row in figure 2 corresponds to the part of each of the trains of square
wavesS1, S2, S3, . . . , S9, andS10 in interval∆t. In the first place, the structure
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of the last row in that figure corresponds to the part of the train of square waves
S10 in interval∆t. Each pair of consecutive coefficients corresponds to
a square wave inS10. Observe that in∆t there are 5 of these pairs of elements
(that is, there are 5 square waves in∆t). The frequencyf10, corresponding to
S10, is obtained by dividing, by∆t, the number of square waves occurring in
∆t; thus,f10 = 5

∆t
. In the case discussed,∆t = 1 s, so the value off10 is as

follows: f10 = 5 s−1. Of course,∆t can be different from 1 s. Suppose that
we had taken∆t = 5 s. The following value would have been obtained forf10:
f10 = 5

5 s
= 1 s−1 =; and there would have been only one square wave in each

time unit 1 s.

The next to the last row in figure 2 corresponds to the part of the train of
square wavesS9 in the interval∆t. Here the structure of each square wave
is as follows: . The length of the wave of each square wave
corresponding toS9 is double that of the wave corresponding toS10. Note that
each square wave corresponding toS10 is included in 2 sub-intervals of∆t,
whereas each square wave inS9 is encompassed by 4 intervals of∆t. The value
of S9 is obtained by dividing, by∆t, the number of square wavesS9 in ∆t:
f9 = 2.5

∆t
= 2.5 s−1; in other words, in each unit of time 1 s, there are two

and a half waves ofS9.) Observe that because the length of each square wave
corresponding toS9 is twice the length of each wave corresponding toS10, the
following result is to be expected:f9 = 1

2
f10.

The third row from the bottom in figure 2 corresponds to the part of the
train of square wavesS8 in the interval∆t. In this case, the structure of each
square wave is: . The length of each square wave in
S8 is three times that of each square wave inS10. That is, each square wave in
S10 is encompassed by 2 sub-intervals of∆t, whereas each square wave ofC8 is
encompassed by 6 sub-intervals of∆t. Of course, the value off8 is obtained by
dividing, by∆t, the number of square waves corresponding toS8 in the interval

∆t: f8 =
10

6
∆t

1

= 1

3
· 5 s−1.

Since the length of each square wave corresponding toS8 is triple the length
of each square wave corresponding toS10, the validity of the following equality
was foreseeable:f8 = 1

3
f10.

In figure 2, it can be seen that the lengths of the square wavesS7, S6, S5, S4,
S3, S2, S1 are respectively 4, 5, 6, 7, 8, 9, and 10 times longer than the square
waveS10.
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Therefore, the following values are obtained for frequenciesf1, f2, f3, . . . ,
f10, corresponding respectively toS1, S2, S3, . . . , S9, andS10:

f1 =
1

10
· f10 =

1

10
· 5 s−1 = 0.5000000 s−1

f2 =
1

9
· f10 =

1

9
· 5 s−1 = 0.5555556 s−1

f3 =
1

8
· f10 =

1

8
· 5 s−1 = 0.6250000 s−1

f4 =
1

7
· f10 =

1

7
· 5 s−1 = 0.7142857 s−1

f5 =
1

6
· f10 =

1

6
· 5 s−1 = 0.8333333 s−1

f6 =
1

5
· f10 =

1

5
· 5 s−1 = 1.0000000 s−1

f7 =
1

4
· f10 =

1

4
· 5 s−1 = 1.2500000 s−1

f8 =
1

3
· f10 =

1

3
· 5 s−1 = 1.6666667 s−1

f9 =
1

2
· f10 =

1

2
· 5 s−1 = 2.5000000 s−1

f10 =
1

1
· f10 =

1

1
· 5 s−1 = 5.0000000 s−1.

More concisely, these ten frequencies can be expressed as:

fi =
1

10− i+ 1
· f10 =

1

10− i+ 1
· 5 s−1; i = 1, 2, 3, . . . , n.

If the same approach is used for any∆t expressed in seconds and any natural
numbern of sub-intervals into which the interval∆t is divided, for the frequen-
ciesf1, f2, f3, . . . ,fn corresponding respectively to the different trains of square
wavesS1, S2, S3, . . . , S9, andSn, the following equation is obtained:

fi =
1

n− i+ 1
· fn =

1

n− i+ 1
·

n

2

∆t
=

1

n− i+ 1
·

n

2∆t
; i = 1, 2, 3, . . . , n.

How to compute the values of the coefficientsC1, C2, C3, . . . ,C9, andC10

shown in figure 2 will be specified below.
First, the sum of all the coefficients in the first column of figure 2 is made

equal to the value of the function which one wants to approximate – that is, (1)–
at the midpoint of the first of the ten sub-intervals into which the interval∆t was
divided. This value will be calledV1. Hence the following equation is obtained:
C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + C10 = V1.
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Second, the sum of all the coefficients in the second column of figure 2 is
made equal to the value of the function which one wants to approximate – that
is (1) – at the midpoint of the second of the ten sub-intervals into which the
interval∆t was divided. This value will be calledV2, and the following equation
is obtained:C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 − C10 = V2.

Third, the sum of all the coefficients in the third column of figure 2 is made
equal to the value of the function which one wants to approximate – that is (1)
– at the midpoint of the third of the ten sub-intervals into which the interval∆t

was divided. This value will be calledV3, and the following equation is obtained:
C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 − C9 + C10 = V3.

The same is done for each of the remaining columns of coefficients in fig-
ure 2. Thus it is possible to obtain another seven equations which, togetherwith
the first three, constitute the following system of linear algebraic equations:

C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + C10 = V1

C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 − C10 = V2

C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 − C9 + C10 = V3

C1 + C2 + C3 + C4 + C5 + C6 + C7 − C8 − C9 − C10 = V4

C1 + C2 + C3 + C4 + C5 + C6 − C7 − C8 + C9 + C10 = V5

C1 + C2 + C3 + C4 + C5 − C6 − C7 − C8 + C9 − C10 = V6

C1 + C2 + C3 + C4 + C5 − C6 − C7 + C8 − C9 + C10 = V7

C1 + C2 + C3 − C4 − C5 − C6 − C7 + C8 − C9 − C10 = V8

C1 + C2 − C3 − C4 − C5 − C6 + C7 + C8 + C9 + C10 = V9

C1 − C2 − C3 − C4 − C5 − C6 + C7 − C8 + C9 − C10 = V10.






















































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























(2)

In the preceding system of linear algebraic equations (2),V1, V2, V3, . . . ,V9,
andV10 are the values forf(t) as specified in (1) at the midpoints of the first,
second, third, . . . , ninth, and tenth sub-intervals, respectively, of theinterval∆t

in whichf(t) is analyzed. It follows that the valuesVi, for i = 1, 2, 3, . . . , 9 and
10, can be computed given thatf(t) has been specified in (1). These values are:

V1 = 6.2360680 V6 = −6.2360680

V2 = −1.7639320 V7 = 1.7639320

V3 = −1.0000000 V8 = 1.0000000

V4 = −1.7639320 V9 = 1.7639320

V5 = 6.2360680 V10 = −6.2360680.

The ten unknowns of the system of equations specified in (2) areC1, C2, C3,
. . . , C9, andC10. |Ci| refers to the amplitude of the train of square wavesSi,
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92 O. SKLIAR – R. MONGE – G. OVIEDO – S. GAPPER

for i = 1, 2, 3, . . . , 10. The (constant) value of each positive square semi-wave
of the train of square wavesSi is |Ci|, and the (constant) value of each negative
square semi-wave of thatSi is−|Ci|.

The system of equations (2) was solved by using LAPACK [1], and the fol-
lowing results were obtained for the unknowns:

C1 = −7.23607 C6 = 2.23607

C2 = 3.61803 C7 = 3.61803

C3 = 10.85410 C8 = −3.61803

C4 = −3.61803 C9 = 3.61803

C5 = −7.23607 C10 = 4.00000.

The trains of square wavesS1, S2, S3, . . . , S9, andS10 have been shown for
interval∆t, in figures 3a, 3b, 3c,. . . , 3i, and 3j, respectively.

(a) S1(t).

Figure 3
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(b) S2(t).

(c) S3(t).

Figure 3
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94 O. SKLIAR – R. MONGE – G. OVIEDO – S. GAPPER

(d) S4(t).

(e)S5(t).

Figure 3

Rev.Mate.Teor.Aplic.(ISSN print: 1409-2433; online: 2215-3373) Vol. 23(1): 85–110, January 2016



A NEW METHOD FOR THE ANALYSIS OF SIGNALS: THE SQUARE WAVE... 95

(f) S6(t).

(g) S7(t).

Figure 3
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(h) S8(t).

(i) S9(t).

Figure 3
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(j) S10(t).

Figure 3: Trains of square wavesS1, S2, S3, . . . , S9, andS10.
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The approximation obtained forf(t) (as specified in (1), in interval∆t, by
adding the 10 trains of square waves) has been displayed in figure 4.

Figure 4: The dashed line indicates the approximation tof(t), specified in (1), by
10
∑

i=1

Si.

If one wants to achieve a better approximation tof(t), in interval∆t, by
adding the trains of square waves, then∆t should be divided into a larger number
of equal sub-intervals. The larger the number of these sub-intervals, the better
the approximation. Thus, for example, the approximation tof(t) that can be
achieved if∆t is divided into 100 sub-intervals of equal length, is shown in
figure 5. In this case, it is clear that 100 trains of square waves were added
together.
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Figure 5: The dashed line indicates the approximation tof(t), specified in (1), by
100
∑

i=1

Si.

The SWM cannot be considered a branch of Fourier analysis; that is, the
trains of square wavesSi, for i = 1, 2, 3, . . . , n, do not make up a system of
orthogonal functions.

3 The Square Wave Transform (SWT) as a way of
presenting the results of the analysis off(t)
specified in (1)

First, let us examine the results obtained when using the SWT to analyze the
functionf(t) specified in (1), for the case specified above, in which the interval
∆t was divided into 10 equal sub-intervals. These results can be presented by a
sequence of 10 dyads (ordered pairs) such that the first element of the first dyad is
the frequencyf1 corresponding toS1, and the second element of that first dyad
is the coefficientC1; the first element of the second dyad is the frequencyf2
corresponding toS2, and the second element of that second dyad is the coeffi-
cientC2; and so on successively, such that the first element of the tenth dyad
is the frequencyf10 corresponding toS10, and the second element of that tenth
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dyad is the coefficientC10:

(f1;C1) = (0.5000000;−7.23607)

(f3;C3) = (0.6250000; 10.85410)

(f5;C5) = (0.8333333;−7.23607)

(f7;C7) = (1.2500000; 3.61803)

(f9;C9) = (2.5000000; 3.61803)

(f2;C2) = (0.5555556; 3.61803)

(f4;C4) = (0.7142857;−3.61803)

(f6;C6) = (1.0000000; 2.23607)

(f8;C8) = (1.6666667;−3.61803)

(f10;C10) = (5.0000000; 4.00000).

This approximation of the functionf(t) specified in (1) can be expressed in
the frequency domain. To achieve this objective, for each of the frequencies con-
sidered,f1, f2, f3, . . . ,f10, the corresponding coefficientsC1, C2, C3, . . . ,C10

must be indicated. The expression in the frequency domain of this approximation
to f(t) will be called the Square Wave Transform (SWT) of the approximation
to thatf(t). This SWT is displayed in figure 6.

Figure 6: SWT of the approximation tof(t), specified in (1), obtained by dividing the
interval∆t into 10 sub-intervals.

Of course, the SWTs corresponding to numbers as large as desired of equal
sub-intervals into which∆t is divided can be obtained for thef(t) specified
in (1), or for any other function of the time which, in a particular interval∆t,
satisfies the conditions of Dirichlet.

Here, the symbolNs will be used to refer to the number of equal sub-
intervals into which∆t is divided. In figure 7, the SWTs of the approximations
(to thef(t) specified in (1)) obtained are shown for the following values ofNs:
100, 200, and 400.
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(a) SWT corresponding toNs = 100.

(b) SWT corresponding toNs = 200.

Figure 7
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102 O. SKLIAR – R. MONGE – G. OVIEDO – S. GAPPER

(c) SWT corresponding toNs = 400.

Figure 7: The SWTs obtained of the approximations to the functionf(t) (specified in
(1)), have been displayed in 7a, 7b, and 7c, forNs = 100, Ns = 200, and
Ns = 400, respectively.

Note that in the three cases displayed in figure 7, different scales were used
for the axes of the abscissas. The same scale will be used for the axes in figure 11.

4 The SWT as a tool for the analysis of an
electroencephalographic signal

The SWT can be used for the analysis of signals of biomedical interest, such as
those of electrocardiograms (ECG), electroencephalograms (EEG), electromyo-
grams (EMG), etc.

Suppose that one has a sequence of 10 values of an electrophysiological
signal, such as an electroencephalographic recording. To obtain the SWT cor-
responding to that sequence, the sequence of values is treated the same as was
treated, with the same objective (that of obtaining the SWT) the sequence of val-
uesV1, V2, V3, . . . ,V10, in the system of algebraic equations (2). Generally, if
one wants to obtain the SWT corresponding to a sequenceV1, V2, V3, . . . ,VN of
measured values from that recording, that sequence of values is treated the same
as the sequence of valuesV1, V2, V3, . . . ,VNs

is treated, withNs = N . Let us
recall thatV1, V2, V3, . . . , VNs

is a sequence of values of a function which are
computed at the midpoints of theNs equal sub-intervals of interval∆t for which
the function is characterized analytically.
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A sequence of 160 “samples” (i.e., measured values) from an electroen-
cephalographic recording is displayed in figure 8. The data were taken from the
EEG Motor Movement/ Imagery Dataset (tagged MMIDB) in PhysioBank [3].
That recording corresponds to FC5 of run 01 of Subject S001, with a “sampling”
frequency of 160 Hz.

Figure 8: Excerpt from an EEG, 160 Hz.

The sequence of voltage measurements specified in microvolts (µV ), shown
in figure 8, is as follows:
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V1 = −16 V33 = 7 V65 = 38 V97 = 17 V129 = −61
V2 = −56 V34 = 29 V66 = 68 V98 = 42 V130 = −60
V3 = −55 V35 = −25 V67 = 81 V99 = 27 V131 = −30
V4 = −50 V36 = −17 V68 = 99 V100 = 33 V132 = −5
V5 = −36 V37 = 0 V69 = 78 V101 = 59 V133 = −33
V6 = −45 V38 = −11 V70 = 26 V102 = 67 V134 = −18
V7 = −27 V39 = −29 V71 = 1 V103 = 69 V135 = 9
V8 = −4 V40 = −4 V72 = −7 V104 = 79 V136 = −14
V9 = −38 V41 = 1 V73 = −7 V105 = 32 V137 = −20
V10 = −21 V42 = −12 V74 = −27 V106 = 23 V138 = −10
V11 = −4 V43 = 2 V75 = −16 V107 = 34 V139 = −14
V12 = −15 V44 = −6 V76 = −13 V108 = 42 V140 = −20
V13 = 26 V45 = −32 V77 = −4 V109 = 34 V141 = −7
V14 = 42 V46 = −18 V78 = −19 V110 = 36 V142 = −6
V15 = 32 V47 = −16 V79 = −19 V111 = 32 V143 = −12
V16 = 25 V48 = −3 V80 = −32 V112 = 15 V144 = −25
V17 = −14 V49 = 30 V81 = −41 V113 = 31 V145 = −44
V18 = −36 V50 = 22 V82 = −38 V114 = 42 V146 = −44
V19 = −27 V51 = 0 V83 = −40 V115 = 53 V147 = −32
V20 = −37 V52 = 10 V84 = −27 V116 = 57 V148 = −60
V21 = −18 V53 = 34 V85 = −16 V117 = 20 V149 = −68
V22 = −4 V54 = 46 V86 = −21 V118 = 1 V150 = −51
V23 = −21 V55 = 22 V87 = 2 V119 = 26 V151 = −52
V24 = −26 V56 = −5 V88 = 15 V120 = 24 V152 = −39
V25 = 0 V57 = −16 V89 = 13 V121 = 4 V153 = −55
V26 = −1 V58 = 13 V90 = 7 V122 = −16 V154 = −29
V27 = 7 V59 = 10 V91 = 6 V123 = −25 V155 = −31
V28 = −8 V60 = 12 V92 = 19 V124 = −22 V156 = −45
V29 = −32 V61 = 7 V93 = 38 V125 = −23 V157 = −37
V30 = −39 V62 = −8 V94 = 31 V126 = −29 V158 = −33
V31 = −37 V63 = −12 V95 = −3 V127 = −10 V159 = −37
V32 = −41 V64 = 4 V96 = −3 V128 = −20 V160 = −23

In figure 9, the SWT is shown for the sequence of 160 “samples” (i.e., mea-
sured values) of that electroencephalographic recording.
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Figure 9: The SWT corresponding to the sequence of “samples” represented in figure 8,
from an electroencephalographic recording.

In figure 10, a close-up of the most notable portion of the SWT is shown.

Figure 10: Close-up of the SWT corresponding to the sequence of “samples” rep-
resented in figure 9, from an electroencephalographic recording, where
fi < 16.

The sequence of 160 dyads such that the first element of theith dyad
(i = 1, 2, 3, . . . , 160) is fi (i.e., the frequency corresponding toSi), and the
second element of that dyad isCi, is given below. (The 160 dyads are in increas-
ing order according to the corresponding frequencies. These frequencies have
been specified with a 4-digit accuracy.)
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(0.5000;−789.5) (0.6667; 186.0) (1.0000;−195.5) (2.0000;−100.0)
(0.5031; 21.5) (0.6723; 21.5) (1.0127;−13.5) (2.0513; 18.0)
(0.5063;−11.0) (0.6780;−33.0) (1.0256; 30.5) (2.1053;−5.5)
(0.5096;−22.0) (0.6838; 28.0) (1.0390; 33.5) (2.1622;−14.5)
(0.5128; 70.0) (0.6897;−5.5) (1.0526;−18.0) (2.2222; 4.5)
(0.5161; 20.5) (0.6957; 11.0) (1.0667;−1.0) (2.2857; 23.0)
(0.5195; 20.5) (0.7018;−3.0) (1.0811;−19.5) (2.3529; 18.5)
(0.5229;−2.0) (0.7080;−25.5) (1.0959;−10.0) (2.4242; 6.0)
(0.5263;−47.5) (0.7143;−231.0) (1.1111; 10.0) (2.5000; 317.5)
(0.5298;−26.5) (0.7207; 25.5) (1.1268;−16.0) (2.5806;−18.0)
(0.5333;−19.0) (0.7273; 25.0) (1.1429; 38.5) (2.6667; 37.5)
(0.5369;−28.5) (0.7339;−21.0) (1.1594; 46.0) (2.7586;−16.5)
(0.5405;−23.0) (0.7407; 61.0) (1.1765; 27.0) (2.8571;−38.5)
(0.5442; 5.5) (0.7477;−24.0) (1.1940;−29.0) (2.9630; 16.0)
(0.5479;−15.5) (0.7547;−31.0) (1.2121;−0.5) (3.0769;−31.5)
(0.5517; 12.0) (0.7619;−17.5) (1.2308; 8.5) (3.2000;−4.0)
(0.5556; 33.0) (0.7692;−117.5) (1.2500; 642.0) (3.3333;−150.5)
(0.5594; 29.0) (0.7767;−25.0) (1.2698; 5.0) (3.4783;−17.5)
(0.5634;−12.5) (0.7843;−13.0) (1.2903;−15.5) (3.6364;−5.5)
(0.5674; 28.5) (0.7921;−24.0) (1.3115;−12.5) (3.8095; 27.0)
(0.5714; 45.5) (0.8000; 8.0) (1.3333; 84.5) (4.0000;−41.5)
(0.5755;−17.0) (0.8081; 14.0) (1.3559;−21.0) (4.2105;−15.0)
(0.5797; 57.5) (0.8163; 18.0) (1.3793;−14.5) (4.4444;−1.5)
(0.5839;−25.0) (0.8247;−32.5) (1.4035; 3.0) (4.7059;−9.0)
(0.5882; 22.5) (0.8333;−564.0) (1.4286;−107.5) (5.0000; 180.5)
(0.5926; 2.5) (0.8421; 10.5) (1.4545; 23.5) (5.3333; 21.5)
(0.5970;−42.0) (0.8511;−9.0) (1.4815; 32.5) (5.7143;−26.0)
(0.6015; 19.0) (0.8602; 24.0) (1.5094;−26.0) (6.1538;−28.0)
(0.6061; 20.0) (0.8696;−38.0) (1.5385;−64.5) (6.6667;−67.0)
(0.6107;−32.5) (0.8791; 33.0) (1.5686; 6.5) (7.2727;−14.5)
(0.6154; 5.5) (0.8889;−7.5) (1.6000; 15.5) (8.0000;−23.5)
(0.6202; 18.0) (0.8989;−17.0) (1.6327; 15.5) (8.8889;−6.0)
(0.6250; 1321.5) (0.9091;−36.0) (1.6667;−307.0) (10.0000; 89.0)
(0.6299;−15.0) (0.9195; 12.5) (1.7021;−26.5) (11.4857;−31.5)
(0.6349;−2.0) (0.9302;−27.0) (1.7391;−18.0) (13.3333;−31.0)
(0.6400; 2.5) (0.9412; 7.0) (1.7778;−4.5) (16.0000;−15.5)
(0.6452;−26.0) (0.9524; 46.5) (1.8182; 0.0) (20.0000; 32.5)
(0.6504; 14.5) (0.9639;−26.5) (1.8605;−16.0) (26.6667;−22.5)
(0.6557;−7.5) (0.9756;−12.0) (1.9048; 23.5) (40.0000; 19.5)
(0.6612; 4.5) (0.9877;−9.0) (1.9512;−13.5) (80.0000; 20.0)
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5 Discussion and prospects

It must be emphasized that the SWTs of the corresponding approximations to
a particular function have a pattern in common for high enough values ofNs.
Although this topic will be addressed elsewhere, preliminary support for this
will be given below.

Partial graphic representations of the SWTs displayed in figure 7 above are
shown in figure 11. The SWTs in whichNs is equal to 100, 200 and 400, re-
spectively, are partially presented in 11a, 11b, and 11c. In this case, the SWTs
are described as “partial” because the axes of the abscissas extend only as far as
the frequencies which are equal to or less than 15. To detect this pattern easily,
the same scale has been used in the axes of the abscissas in 11a, 11b, and11c.

(a)Ns = 100.

Figure 11
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(b) Ns = 200.

(c)Ns = 400.

Figure 11: The SWTs seen in figure 7 are displayed partially in 11a, 11b, and 11c. The
same scale has been used in the axes of the abscissas.
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Note, for example, the correspondence between the coefficients which have
been indicated by the letter “A” in 11a, 11b and 11c. The correspondence be-
tween the coefficients indicated by “B” can also be seen, as can those indicated
by the letter “C”. (Other interesting correspondences can also be observed, if
desired.)

When comparing the SWTs corresponding to a given type of electroen-
cephalographic recordings, care must be taken to use recordings madeduring
the same∆t and with the same sampling frequency.

The first of several computational tools for the use of the SWT to be made
available for interested users has been installed on the website of the Applied
Mathematics and Computer Simulation Group (www.appliedmath group.org).
This tool is that of the Square Wave Transform (SWT) and makes it possible to
obtain the SWT of electroencephalographic recordings automatically [7].
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