REVISTA DE MATEMATICA: TEORIA Y APLICACIONES201623(1) : 85-110
CIMPA—UCR  ISSN 1409-2433 (RINT), 2215-3373 (QLINE)

A NEW METHOD FOR THE ANALYSIS OF
SIGNALS: THE SQUARE WAVE
TRANSFORM (SWT)

UN NUEVO METODO PARA EL ANALISIS DE
SENALES. LA TRANSFORMADA DE
LAS ONDAS CUADRADAS

OSVALDO SKLIAR* RICARDO E. MONGE'
GUILLERMO OVIEDO? SHERRY GAPPER

Received: 30 May 2014; Revised: 28 Aug 2015;
Accepted: 14 Oct 2015

*Escuela de Informatica, Universidad Nacional, Heredia, Costa Rica.-MaiE
oskliar@costarricense.cr

fEscuela de Ciencias de la Computacion e Informatica, Universidad sta Rica, San José,
Costa Rica. E-Mail: ricardo@mogap.net

tUniversidad Latina, San Pedro, Costa Rica. E-Mail: oviedogmo@gmuil.c

$Escuela de Literatura y Ciencias del Lenguaje, Facultad de FilosofA#rgd, éJniversidad
Nacional, Heredia, Costa Rica. E-Mail: sherry.gapper.morrow@tina

85


mailto: oskliar@costarricense.cr
mailto: ricardo@mogap.net
mailto: oviedogmo@gmail.com
mailto: sherry.gapper.morrow@una.cr

86 O. SKLIAR —R. MONGE — G. OVIEDO — S. GAPPER

Abstract

The results obtained by analyzing signals with the Squanes\Wgethod
(SWM) introduced previously can be presented in the freguelomain
clearly and precisely by using the Square Wave Transform (SUéF
scribed here. As an example, the SWT is used to analyze a smxjuen
of samples (that is, of measured values) taken from an eksatephalo-
graphic recording. A computational tool, available at
www. appl i edmat hgr oup. or g/ , has been developed and may be used
to obtain automatically the SWTs of sequences of samples fabm reg-
isters of interest for biomedical purposes, such as those &EG or an
ECG.

Keywords: signal analysis; square wave method; square wave transform.

Resumen

Los resultados obtenidos al analizar sefiales con el MétedasdOn-
das Cuadradas (Square Wave Method, SWM) —previamente irafictma-
pueden ser presentados en el dominio de la frecuencia deranclaea,
precisa y concisa mediante el uso de la Transformada de ldasCtua-
dradas (Square Wave Transform, SWT). Se caracteriza la SWdmp c
ejemplo, se la utiliza para analizar una secuencia de nasg&ts decir, de
valores medidos) tomadas de un registro electroencefdiogr Enww.
appl i ednmat hgr oup. or g, se encuentra disponible un recurso com-
putacional que posibilita obtener, de manera automatjzadaSWT de
secuencias de muestras tomadas de registros de interésditomomo el
EEG Yy el ECG, entre otros.

Palabras clave: andlisis de sefales; método de las ondas cuadradas; transfor-
mada de las ondas cuadradas.

Mathematics Subject Classification:94A12, 65F99.

1 Introduction

Consideration was previously given to the analysis of functions of oriabla
using the Square Wave Method (SWM) [4]. This method, which will be regtew
briefly in the following section, was generalized for functions of two vdegab
and applied to the analysis of images [5].

The objective of this article is to specify how the results obtained by analyz-
ing signals with the SWM can be presented in the frequency domain clearly and
concisely, using the mathematical process described below: the Squaee Wa
Transform (SWT).

A preliminary version of this article was made available on arXiv [6].
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2 Brief review of the application of the SWM to the
analysis of functions of one variable

Given that this article is devoted to the analysis of signals, it will be congidere
that the independent variable is ting. (

Let f(¢) be a function of a variablg which in a given intervalAt, satisfies
the conditions of Dirichlet[[2]: (1) In the intervaht, the functionf(¢) to be
analyzed must have a finite number of relative maximums and minimums; (2)
in that interval it also must have a finite number of points of discontinuity; and
(3) for any instant ofA¢, f(t) must have a finite value. That function can then
be approximated in that interval by means of a particular sum of trains afsqu
waves. The use of the SWM makes it possible to specify these trains aksqua
waves unambiguously.

Consider, for example, the functigfift), as indicated below:

f(t) =3sin(2r-5-t) +4sin(2n-7-t); 0<t<1s. (1)

In figureld, f (¢) is shown for the interval specified in (1).

f(y) &

t(s)
Figure 1: f(t) = 3sin(27 - 5-t) +4sin(27 - 7-¢); 0<t<1s.

Note that the interval of (At), in which f(¢) will be analyzed, has a length
of 1second (1s)At=(1—-0)s=1s.

First, an explanation will be given about how to proceed if one wants to ob-
tain an approximation tgf(¢), in the intervalAt specified in (1), composed of
the sum of 10 trains of square waves. The intetvals then divided into a num-
ber of sub-intervals — of equal length — which is the same as the numbeinsf tra
of square waves. In this case, there will be 10 sub-intervals. Thesapy-
tion to f(¢) to be obtained in intervah¢ will be the sum of 10 trains of square
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waves: Sy, Sa, S3, ..., 59, andSyg. The first of the trains of square waves will
be referred to by, the second by,, and so on.
Each of these trains of waves, fori = 1,2,3,...,9 and10, will be char-

acterized by a certain frequengy (that is, the number of waves in the train of
square waves considered which is contained in the unit of time), and @ncerta
coefficientC; whose absolute value is the amplitude of the corresponding train.

For the case considered here, a description will be provided belowwotte
amplitudes corresponding to the different trains of square waves terdeed
(see figuréR).

At

A
' ™

iC;iCiCliCliCiiCiCiiCiiCiGC
C2i Cz iCaiCz iCaiCy iCaiCriCri-Co
C3i{C3 iC3i C3iC3iC3 iC3iC3 i-C3i-Cg
ColCo iCoiCo iCoiCo Coi-Cyi—CyiCy
Csi Cs iCsi Cs i Cs i Cs -Csi—Cs5 i-Csi —Cs
Col Co Coi Co  Coi—-Co ~Coi-Co —Coi—C
C7i C7 i1Cri Cy i-C7i-C7i-C7:-C7: Cr i Cy
Co' Cs | Cg i —Cs ~Csl~Cs | Cs Cs | Coi—-Cs
Cogi Cg i=Coi=CqgiCoi Cg -Coi-Co i Coi Co
:C10{=C10{C10{=C10{C10{~C10{C10{~C10{ C10{~C10 ¥

Figure 2: How to apply the SWM to the analysis of the function represgimtdigure[].
(See indications in text.)

The vertical arrow pointing down at the right of figure 2 indicates how to
add the terms corresponding to each of the 10 sub-intervals off his proce-
dure will make it possible to compute the values of the coeffici€qts’s, Cs,

..., Cy, andCy shown in figurd R. First, however, indications will be given
about how to compute the frequencigs fo, fs, ..., fo, and f1o corresponding
respectively to the square wave traif\s Sz, Ss, ...,.S9, andSig.

Each row in figuré 2 corresponds to the part of each of the trains afrequ
wavesSy, Sa, Ss, .. ., Sy, andSyg in interval At. In the first place, the structure
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of the last row in that figure corresponds to the part of the train of squaves

S1o in interval At. Each pair of consecutive coefficierCioi-Cio corresponds to

a square wave it579. Observe that in\t there are 5 of these pairs of elements
(that is, there are 5 square wavesAin). The frequencyfig, corresponding to
S10, IS obtained by dividing, byAt, the number of square waves occurring in
At; thus, f1p = %. In the case discussedt = 1 s, so the value offg is as
follows: f1o = 5s~!. Of course,At can be different from 1 s. Suppose that
we had takem\t = 5 s. The following value would have been obtained fag:

Jf10 = % = 1s~! =; and there would have been only one square wave in each
time unit 1 s.

The next to the last row in figufd 2 corresponds to the part of the train of
square wavesy in the intervalAt. Here the structure of each square wave
is as follows: Cs i Co i-Coi-Co . The length of the wave of each square wave
corresponding t&y is double that of the wave corresponding$te. Note that
each square wave correspondingsg is included in 2 sub-intervals cft,
whereas each square waveSinis encompassed by 4 intervals&t. The value
of Sy is obtained by dividing, byAt¢, the number of square waves in At:
fo = % = 2.5 s7!: in other words, in each unit of time 1 s, there are two
and a half waves ofy.) Observe that because the length of each square wave
corresponding t@y is twice the length of each wave correspondingig, the
following result is to be expectedy = % f10-

The third row from the bottom in figurel 2 corresponds to the part of the
train of square wavesSs in the intervalAt. In this case, the structure of each
square wave isCs{ Cs | Cs | -Cg {-Csi -Cs . The length of each square wave in
Sg is three times that of each square wavesig. That is, each square wave in
S10 is encompassed by 2 sub-intervalsof whereas each square wavefis
encompassed by 6 sub-intervals/f. Of course, the value of; is obtained by
dividing, b%At, the number of square waves correspondin§gt@ the interval

At: fszgzéﬁsfl.
1

Since the length of each square wave correspondisg te triple the length
of each square wave correspondingpig, the validity of the following equality
was foreseeablefs = 3 fio.

In figurel2, it can be seen that the lengths of the square wWewes;, S5, S4,

Ss, Sy, S are respectively 4, 5, 6, 7, 8, 9, and 10 times longer than the square
wave Syg.
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Therefore, the following values are obtained for frequen¢iess, fs, ...,

f10, corresponding respectively 8, So, Ss, . .., Sg, andSyg:
fi= % fio = % 5571 =0.5000000 5!
f2= é fio = % 55t =0.5555556 5!
f3= é “fio = % 5571 =0.6250000 51
fa= % “fio = % 557l =0.7142857 571
fs = é “fio = é 5571 =10.8333333 571
fo= é “fio = % 5571 =1.0000000s"1
fr= % “fio = i 557t =1.2500000s"
fs = é “fio = % 55t =1.6666667s!
fo= % “fio = % 5571 =2.5000000s"*
fi0 = % “fio = % 5571 =5.0000000s"L.

More concisely, these ten frequencies can be expressed as:
1 1
“0—irr 0T

If the same approach is used for alty expressed in seconds and any natural
numbern of sub-intervals into which the intervalt is divided, for the frequen-
ciesfi, f2, f3, ..., fn coOrresponding respectively to the different trains of square

fi 5571 i=1,2,3,...,n.

wavesSy, S2, Ss, . . ., Sy, andS,, the following equation is obtained:
1 1 z 1 n
Ji n—i+1 Jn n—itl At n—itl 2A¢ T Tl

How to compute the values of the coefficients, Cs, Cs, ..., Cq, andCig
shown in figuré R will be specified below.

First, the sum of all the coefficients in the first column of figure 2 is made
equal to the value of the function which one wants to approximate — that is, (1)
at the midpoint of the first of the ten sub-intervals into which the intefsalvas
divided. This value will be called;. Hence the following equation is obtained:
Ci+Co+C3+Cy+Cs+4+Cs+ Cr+ Cs + Cy + Crg = V1.
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Second, the sum of all the coefficients in the second column of figure 2 is
made equal to the value of the function which one wants to approximate — that
is (1) — at the midpoint of the second of the ten sub-intervals into which the
interval At was divided. This value will be calleéld,, and the following equation
is obtained:C; + Co + C3+ Cy + Cs5 + Cg + C7 4+ Csg + Cg — Cyp = V.

Third, the sum of all the coefficients in the third column of figure 2 is made
equal to the value of the function which one wants to approximate — that is (1)
— at the midpoint of the third of the ten sub-intervals into which the intefal
was divided. This value will be calléid;, and the following equation is obtained:
Ci+Co+C3+Cy+Cs5+Cs+ Cr+Cg — Cg + Crg = V3.

The same is done for each of the remaining columns of coefficients in fig-
ure[2. Thus it is possible to obtain another seven equations which, togéther
the first three, constitute the following system of linear algebraic equations:

C1+C+C3+C1+C5+Cs+Cr+Cs+Co+Cro=V1
C1+C+C3+C1+C5+Cs+Cr+Cs+Co—Crp=Va
C1+C+C3+C1+C5+Cs+Cr+Cs—Cog+Crp=V3
C1+0C+C34+Ci+C5+C+Cr—Cg —Cog —Cro =V,
C1+C2+C3+Cs4+C5+Cs—Cr —Cs+Co+Crp=Vs5

Ci4+0,+C3+C4+C5—Csg—C7—Cs+Cy—Cro= Vs @

Ci14+40C,+C3+C+C5—Cs—C7r+Cs—Cy+ Cig = V7

Ci1+0C+C3-C1—C5—Cs—C7+Cs—Cyg—Cio=VWg

Ci+Cy—C3—Cy—Cs5—Cs+Cr+Cs+ Cy+ Crog=Vy

Ci—Cy—C3—Cy—C5 —Cg+ C7 — Csg + Cy — C19 = Vip.

In the preceding system of linear algebraic equationsi2)Vs, Vs, ..., Vs,
and Vg are the values foyf (¢) as specified in (1) at the midpoints of the first,
second, third, ..., ninth, and tenth sub-intervals, respectively, dhtbeval At

in which f(t) is analyzed. It follows that the valué3, fori = 1,2,3,...,9 and
10, can be computed given thétt) has been specified in (1). These values are:

V1 = 6.2360680 Ve = —6.2360680
Vo = —1.7639320 Vz = 1.7639320

V3 = —1.0000000 Vs = 1.0000000

Vi = —1.7639320 Vo = 1.7639320

V5 = 6.2360680 Vip = —6.2360680.

The ten unknowns of the system of equations specified in (2)'gré-, Cs,
..., Cy, andCyg. |C;| refers to the amplitude of the train of square waggs
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fori =1,2,3,...,10. The (constant) value of each positive square semi-wave
of the train of square waves; is |C;|, and the (constant) value of each negative
square semi-wave of that is —|C;|.

The system of equations (2) was solved by using LAPACK [1], and the fo
lowing results were obtained for the unknowns:

C1 = —7.23607 Cs = 2.23607
Cy = 3.61803 C7 = 3.61803
C3 = 10.85410 Cs = —3.61803
Cy = —3.61803 Cy = 3.61803
Cs = —7.23607 C10 = 4.00000.
The trains of square waves, So, Ss, . .., S9, andSiy have been shown for

interval At, in figures 3a, 3b, 3c,..., 3i, and 3j, respectively.

S (t) 12 . ; . ; . ; :

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

bommmmm 1 t (s)
At
(@) S1(t).
Figure 3
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Sz(t) 72 T T T T T T T

g L 4
4 L J
0
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8 + -
-12 t } 1 } t t }

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

ferresmmmmmmennmennmnnn 1 t (s)

At
(b) Sa(t)
Sa(t) 12 T T T T T T T

g 1 1
4 4 4
0
4 4 i
8 4 1
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0 0.25 0.5 0.75 1 1.25 15 1.75 2

F---omm - 1 t (s)

At
(c) Ss(t).
Figure 3
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S4(t)

Ss(1)

12 T T T T T T T
g L 4
4 + N
0
4 d
-8 + 4
-12 t } t } 1 t 1

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

F---mmmm - 1 t(s)

At
(d) Sa(t)

12 T T T T T T T
g 1 1
4 4 4
0
4 4 i
8 4 1
-12 : : : : 1 : :

0 0.25 0.5 0.75 1 1.25 15 1.75 2

F---omm - 1 t (s)

At
(e)Ss(t).
Figure 3

Rev.Mate.Teor. ApliqISSN print: 1409-2433; online: 2215-3373) \ol.

23(1): 830, January 2016



A NEW METHOD FOR THE ANALYSIS OF SIGNALS THE SQUARE WAVE...

95

56 (t) 1 2 T T T T T
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S,(0) 12 : : : : :
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Figure 3
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Sa(t)
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Figure 3
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S10(t) 12 I ————
s 1 ]
4 4
0
4 + U U U U U U U L
8 + J
12 - 1 } : } i }

0 0.25 05 0.75 1 1.25 15 1.75 2
- i t (s)
At
(@) S1o(t).
Figure 3: Trains of square wave$;, So, S3, . .., Sg, andSyg.
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The approximation obtained fgf(t¢) (as specified in (1), in intervaht, by
adding the 10 trains of square waves) has been displayed inffigure 4.

AWA
[~

-12

Figure 4: The dashed line indicates the approximationf{®), specified in (1), by

10
> S
i=1

If one wants to achieve a better approximationf{®), in interval At, by
adding the trains of square waves, tiiefishould be divided into a larger number
of equal sub-intervals. The larger the number of these sub-intervalfetiter
the approximation. Thus, for example, the approximatiorf o that can be
achieved ifAt is divided into 100 sub-intervals of equal length, is shown in
figure[8. In this case, it is clear that 100 trains of square waves weledad
together.
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-12

Figure 5: The dashed line indicates the approximationfi{@), specified in (1), by
100

> S
i=1

The SWM cannot be considered a branch of Fourier analysis; thateis, th
trains of square waves;, fori = 1,2,3,...,n, do not make up a system of
orthogonal functions.

3 The Square Wave Transform (SWT) as a way of
presenting the results of the analysis of (¢)
specified in (1)

First, let us examine the results obtained when using the SWT to analyze the
function f(t) specified in (1), for the case specified above, in which the interval
At was divided into 10 equal sub-intervals. These results can be prdssnge
sequence of 10 dyads (ordered pairs) such that the first elemeetfostidyad is

the frequencyf; corresponding t@7, and the second element of that first dyad

is the coefficientCy; the first element of the second dyad is the frequeficy
corresponding t&s, and the second element of that second dyad is the coeffi-
cientCsy; and so on successively, such that the first element of the tenth dyad
is the frequencyf;o corresponding t®1(, and the second element of that tenth
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100 O. SKLIAR —R. MONGE — G. OVIEDO — S. GAPPER

dyad is the coefficient';:

(f1;C1) = (0.5000000; —7.23607) (f2; C2) = (0.5555556; 3.61803)
(f3;Cs) = (0.6250000; 10.85410) (f1;C4) = (0.7142857; —3.61803)
(f5;C5) = (0.8333333; —7.23607) (f6: Cs) = (1.0000000; 2.23607)
(f7;C7) = (1.2500000; 3.61803) (fs; Cs) = (1.6666667; —3.61803)
(fo; Cy) = (2.5000000; 3.61803) (f10; C10) = (5.0000000; 4.00000).

This approximation of the functiofi(¢) specified in (1) can be expressed in
the frequency domain. To achieve this objective, for each of the frezgscon-
sidered,f1, fo, f3, ..., f10, the corresponding coefficients, Cs, Cs, ...,C1g
must be indicated. The expression in the frequency domain of this appriima
to f(¢) will be called the Square Wave Transform (SWT) of the approximation
to thatf(¢). This SWT is displayed in figuiid 6.

-10 4

-20 T T T T T

f (Hz)

Figure 6: SWT of the approximation tg(¢), specified in (1), obtained by dividing the
interval At into 10 sub-intervals.

Of course, the SWTSs corresponding to numbers as large as desirqdadf e
sub-intervals into whichAt is divided can be obtained for th&t) specified
in (1), or for any other function of the time which, in a particular inter«l
satisfies the conditions of Dirichlet.

Here, the symbolV, will be used to refer to the number of equal sub-
intervals into whichAt is divided. In figurél/, the SWTSs of the approximations
(to the f(¢) specified in (1)) obtained are shown for the following value$Vof
100, 200, and 400.
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Ci
60
]l i=1.2,..,100
30 -
g: LL I.| L1 .
30
-60 T T T T T
1] 10 20 30 40 50
f (Hz)
(a) SWT corresponding t&V, = 100.
Ci
70 4
] i=12,..,200
35 -
0 .
-35 -
-70 T T T T T
0 20 40 60 80 100
f (Hz)

(b) SWT corresponding t&Vs = 200.

Figure 7
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80 —

40 -

40 -

-80 T T T T T
0 40 80 120 160 200

f (Hz)
(c) SWT corresponding t&Vs = 400.

Figure 7: The SWTs obtained of the approximations to the functi¢t) (specified in
(1)), have been displayed in 7a, 7b, and 7c,far= 100, N, = 200, and
N = 400, respectively.

Note that in the three cases displayed in figure 7, different scales wede u
for the axes of the abscissas. The same scale will be used for the axgesefl .

4 The SWT as a tool for the analysis of an
electroencephalographic signal

The SWT can be used for the analysis of signals of biomedical interestasuc
those of electrocardiograms (ECG), electroencephalograms (EE&)pahgo-
grams (EMG), etc.

Suppose that one has a sequence of 10 values of an electrophysiblogic
signal, such as an electroencephalographic recording. To obtain tfiec8k/
responding to that sequence, the sequence of values is treated thessaase a
treated, with the same objective (that of obtaining the SWT) the sequenaé of v
uesViy, Vo, Vs, ..., Vg, in the system of algebraic equations (2). Generally, if
one wants to obtain the SWT corresponding to a sequéndé, Vs, ..., Vy of
measured values from that recording, that sequence of values isltteattame
as the sequence of values, V5, Vs, ..., Vy, is treated, withV; = N. Let us
recall thatV;, Vo, Vs, ..., Vi, is a sequence of values of a function which are
computed at the midpoints of thé; equal sub-intervals of intervalz for which
the function is characterized analytically.
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A NEW METHOD FOR THE ANALYSIS OF SIGNALS THE SQUARE WAVE... 103

A sequence of 160 “samples” (i.e., measured values) from an electroen-
cephalographic recording is displayed in figke 8. The data were taenthe
EEG Motor Movement/ Imagery Dataset (tagged MMIDB) in PhysioBank [3]
That recording corresponds to FC5 of run 01 of Subject S001, wisiamnpling”
frequency of 160 Hz.

uV

100.0

60.0

20.0

I AL Al
p L Y

0.0 0.2 0.4 0.6 0.8 1.0 t(s)

Figure 8: Excerpt from an EEG, 160 Hz.

The sequence of voltage measurements specified in microudis shown
in figure[8, is as follows:
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Vi=-16 Vi3=7 Ves = 38 Vo7 = 17 Vigg = —61
Vo=-56 V33=29 Vg = 68 Vog = 42 Vi30 = —60
V3=-55 Vs5=-25 Vg7 =81 Vog = 27 Vig1 = —30
Vi=-50 Vzg=—17 Vg =99  Vigp=33  Viza =5
Vs = —36 Var =0 Vo = 78 Vio1 = 59 Vigs = —33
Ve=—45 Vyg=—11 Vzg=26  Vigo=67 Vi34 = —18
Vo= -27 Vig=-29 V=1 Vips = 69 Vigs =9
Ve =—4 Vio=—4 Vip=-T Viu=179 Vize = —14
Vo = —38 V=1 Vog = —7 Vios = 32 Vigz = —20
Vio=—-21 Vip=-12 Vi =-27T Vigg=23  Vizgg=—-10
Vii=—-4 Viz3=2 Vis = =16 Vigr =34  Vigg = —14
Vig=-15 Viyu=-6 Vig=-13 Vipg =42 Vigo = —20
Vig=26 Vis=-32 Vir=-4 Vigg=34  Vigg =7
Vig =42 Vg =—18 Vg =—19 V19 = 36 Vigg = —6

Vis=32 Vig=-16 Vi=-19 Vi1 =32 Vigz=-12
V16 =25 V48 =-3 Vso = -32 V112 =15 V144 = -25
Vir=-14 Vi=30 Ve =-41 Vijz=31 Vigs=-44

Vig=—-36 Vso=22 Vega=-38 Viiu=42 Viye=—44
Vig=—27 Vs =0 Va3 =—40 Vi =53  Vigr = —32

Voo = =37 Vs =10 Vg = =27 V416 = 57 Vigs = —60
Vor=—-18 Vi3 =34 Ves = —16 Vi17 =20 Vigg = —68
Voo =—4  Vsu =46  Vgg=-21 Vig=1 Viso = —51
Vog = =21 Vs5=22  Vgr =2 Viig=26  Vis1 = —52

Voy = —26 Vs = -5 Vs = 15 Vigg = 24 Vige = —39
Vas =0 Vsr=—16 Vgg=13  Vio1 =4 Viss = —55
Vae =—1 Vg =13 Voo =7 Vigg = —16  Visy = —29
Vor =17 Vsg =10 Vg1 =6 Vigg = =25 Vizs = =31
Vas=—8 Veo=12 Voo =19 Vigg=—-22 Vis6=—45
Vag =—32 Ve =7 Vo3 =38  Vigs = —23 Vizr = —37
V3o =—39 Vg =-8 Vyy =31 Visg = =29 Visg = —33
Va1 =37 Vez=—12 Vogs=-3 Vigr=—-10 Vig9 = —37
V3o =—41 Vpy =4 Vog = =3 Vigg =20 Vigop = —23

In figure[9, the SWT is shown for the sequence of 160 “samples” (i.e., mea-
sured values) of that electroencephalographic recording.
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Ci (uV)
1500.0 -
i=1,2,..,160
500.0 -
L

-500.0

-1500.0 : : : .
0.0 20.0 40.0 60.0 80.0 fi (Hz)

Figure 9: The SWT corresponding to the sequence of “samples” repedanfigurd 8,
from an electroencephalographic recording.

In figure[10, a close-up of the most notable portion of the SWT is shown.

Ci (uV)

1500.0

500.0

“'\'w AN .

-500.0

-1500.0 : . T T
0.0 4.0 8.0 12.0 16.0 f; (Hz)

Figure 10: Close-up of the SWT corresponding to the sequence of “safnpigs
resented in figur€l9, from an electroencephalographic davgy where
fi < 16.

The sequence of 160 dyads such that the first element oftheyad
(¢ = 1,2,3,...,160) is f; (i.e., the frequency corresponding £), and the
second element of that dyadds, is given below. (The 160 dyads are in increas-
ing order according to the corresponding frequencies. Thesednems have
been specified with a 4-digit accuracy.)
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(0.5000; —789.5)
(0.5031;21.5)
(0.5063; —11.0)
(0.5096; —22.0)
(0.5128; 70.0)
(0.5161;20.5)
(0.5195; 20.5)
(0.5229; —2.0)
(0.5263; —47.5)
(0.5298; —26.5)
(0.5333; —19.0)
(0.5369; —28.5)
(0.5405; —23.0)
(0.5442; 5.5)
(0.5479; —15.5)
(0.5517;12.0)
(0.5556; 33.0)
(0.5594; 29.0)
(0.5634; —12.5)
(0.5674; 28.5)
(0.5714; 45.5)
(0.5755; —17.0)
(0.5797; 57.5)
(0.5839; —25.0)
(0.5882;22.5)
(0.5926;2.5)
(0.5970; —42.0)
(0.6015;19.0)
(0.6061;20.0)
(0.6107; —32.5)
(0.6154; 5.5)
(0.6202; 18.0)
(0.6250; 1321.5)
(0.6299; —15.0)
(0.6349; —2.0)
(0.6400; 2.5)
(0.6452; —26.0)
(0.6504; 14.5)
(0.6557; —7.5)
(0.6612;4.5)
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(0.6667; 186.0)
(0.6723;21.5)
(0.6780; —33.0)
(0.6838; 28.0)
(0.6897; —5.5)
(0.6957;11.0)
(0.7018; —3.0)
(0.7080; —25.5)
(0.7143; —231.0)
(0.7207; 25.5)
(0.7273;25.0)
(0.7339; —21.0)
(0.7407; 61.0)
(0.7477; —24.0)
(0.7547; —31.0)
(0.7619; —17.5)
(0.7692; —117.5)
(0.7767; —25.0)
(0.7843; —13.0)
(0.7921; —24.0)
(0.8000; 8.0)
(0.8081;14.0)
(0.8163; 18.0)
(0.8247; —32.5)
(0.8333; —564.0)
(0.8421;10.5)
(0.8511; —9.0)
(0.8602; 24.0)
(0.8696; —38.0)
(0.8791; 33.0)
(0.8889; —7.5)
(0.8989; —17.0)
(0.9091; —36.0)
(0.9195;12.5)
(0.9302; —27.0)
(0.9412;7.0)
(0.9524; 46.5)
(0.9639; —26.5)
(0.9756; —12.0)
(0.9877; —9.0)

(1.0000; —195.5)
(1.0127; —13.5)
(1.0256; 30.5)
(1.0390; 33.5)
(1.0526; —18.0)
(1.0667; —1.0)
(1.0811; —19.5)
(1.0959; —10.0)
(1.1111;10.0)
(1.1268; —16.0)
(1.1429; 38.5)
(1.1594; 46.0)
(1.1765; 27.0)
(1.1940; —29.0)
(1.2121; —0.5)
(1.2308;8.5)
(1.2500; 642.0)
(1.2698;5.0)
(1.2903; —15.5)
(1.3115; —12.5)
(1.3333;84.5)
(1.3559; —21.0)
(1.3793; —14.5)
(1.4035; 3.0)
(1.4286; —107.5)
(1.4545;23.5)
(1.4815;32.5)
(1.5094; —26.0)
(1.5385; —64.5)
(1.5686; 6.5)
(1.6000; 15.5)
(1.6327;15.5)
(1.6667; —307.0)
(1.7021; —26.5)
(1.7391; —18.0)
(1.7778; —4.5)
(1.8182;0.0)
(1.8605; —16.0)
(1.9048; 23.5)
(1.9512; —13.5)

(2.0000; —100.0)
(2.0513; 18.0)
(2.1053; —5.5)
(2.1622; —14.5)
(2.2222; 4.5)
(2.2857;23.0)
(2.3529; 18.5)
(2.4242; 6.0)
(2.5000; 317.5)
(2.5806; —18.0)
(2.6667; 37.5)
(2.7586; —16.5)
(2.8571; —38.5)
(2.9630; 16.0)
(3.0769; —31.5)
(3.2000; —4.0)
(3.3333; —150.5)
(3.4783; —17.5)
(3.6364; —5.5)
(3.8095; 27.0)
(4.0000; —41.5)
(4.2105; —15.0)
(4.4444; —1.5)
(4.7059; —9.0)
(5.0000; 180.5)
(5.3333;21.5)
(5.7143; —26.0)
(6.1538; —28.0)
(6.6667; —67.0)
(7.2727; —14.5)
(8.0000; —23.5)
(8.8889; —6.0)
(10.0000; 89.0)
(11.4857; —31.5)
(13.3333; —31.0)
(16.0000; —15.5)
(20.0000; 32.5)
(26.6667; —22.5)
(40.0000; 19.5)
(80.0000; 20.0)
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5 Discussion and prospects

It must be emphasized that the SWTs of the corresponding approximations to
a particular function have a pattern in common for high enough valuég; of
Although this topic will be addressed elsewhere, preliminary support fer th
will be given below.

Partial graphic representations of the SWTs displayed in figure 7 aleve a
shown in figurd_Il1. The SWTs in whicN; is equal to 100, 200 and 400, re-
spectively, are partially presented in 11a, 11b, and 11c. In this cas&WTs
are described as “partial” because the axes of the abscissas extgiad @ar as
the frequencies which are equal to or less than 15. To detect this paigly) e
the same scale has been used in the axes of the abscissas in 11a, 1, and

Ci
60 -
i=12,..,100
304
0- [|I|,||||‘|.. I|.| Ll | ] | |
C
.30 4 B
A
-60 T T T
0 5 10 15
f (Hz)
(@) N, = 100.
Figure 11
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C;
70 -
] i=12,..,200
354
0 [P AR B T S | |
b C
-35 - B
1 |a
70 T T T
0 5 10 15
f (Hz)
(b) N, = 200.
C;
80 4
] =12, .., 400
40 -
0 : Mol bes [ s T
b C
-40 — B
] |a
-80 T T T
0 5 10 15
[ (Hz)
(©) N, = 400.

Figure 11: The SWTs seen in figufé 7 are displayed partially in 11a, 11db14,c. The
same scale has been used in the axes of the abscissas.
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Note, for example, the correspondence between the coefficients wdnieh h
been indicated by the letter “A’ in 11a, 11b and 11c. The correspordeec
tween the coefficients indicated by “B” can also be seen, as can thosatgttlic
by the letter “C”. (Other interesting correspondences can also bevealsdf
desired.)

When comparing the SWTs corresponding to a given type of electroen-
cephalographic recordings, care must be taken to use recordingsdukag
the sameAt and with the same sampling frequency.

The first of several computational tools for the use of the SWT to be made
available for interested users has been installed on the website of the Applied
Mathematics and Computer Simulation Group (www.appliedmath group.org).
This tool is that of the Square Wave Transform (SWT) and makes it gessib
obtain the SWT of electroencephalographic recordings automatically [7].
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