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Abstract

This paper introduces an adaptation of multiple criteria scatter search to deal with
nonlinear continuous vector optimization problems on bounded variables, applying
Tabu Search approach as diversification generator method. Frequency memory and
another escape mechanism are used to diversify the search. A relation Pareto is apply
in order to designate a subset of the best generated solutions to be reference solutions.
A choice function called Kramer Selection is used to divide the reference solution in
two subsets. The Euclidean distance is used as a measure of dissimilarity in order
to find diverse solutions to complement the subsets of high quality current Pareto
solutions to be combined. Convex combination is used as a combined method. The
performance of this approach is evaluated on several test problems taken from the
literature.
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Resumen

El art́ıculo presenta una adaptación del algoritmo de Búsqueda Dispersa Multi-
objetivo para la solucionar problemas de optimización vectorial no lineales continuos,
empleando un enfoque de Búsqueda Tabú como un método generador de soluciones
diversas. Memoria de Frequencias y otros mecanismos de escapes son utilizados para
diversificar la búsqueda. La relación Pareto es aplicada para designar un subconjunto
de las mejores soluciones generadas a ser soluciones de referencias. Una función de
selección denominada selección de Kramer se utiliza para dividir al conjunto de refe-
rencia en dos subconjuntos. La distancia Euclideana es usada como una medida de
disimilaridad a modo de hallar soluciones diversas que complementen los subconjuntos
de soluciones potencialmente Pareto de alta calidad a ser combinadas. Como método
de conbinación usamos la combinación convexa. El desempeño de este enfoque es
evaluado con diferentes problemas de pruebas tomados de la literatura.
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1 Introduction

This paper presents one way to apply Tabu Search and Scatter Search in nonlinear multiob-
jective optimization, using a search followed by multiple criteria decision making approach,
that is, generating a set of non-inferior solutions and then select one or more of these on
the basis of multiple criteria decision making.

Following our methodology [3], we use a Pareto-Based Approach, that uses a Choice
Function to rank solutions.

An adaptation of tabu search for nonlinear optimization to a multiobjective environ-
ment is used to generate an initial set of diverse non-inferior solution. Also this adaptation
is extended to incorporate a scatter search approach to improve these solutions toward
the Pareto frontier.

To apply our strategy, we consider two approaches: (1) directional search, where a
transition from one point to another occurs by reference to feasible directions; (2) scatter
search, where successive collections of points are generated from weighted combinations
of reference points.

The organization of the paper is as follows. Notation and general methods are treated
in section 2. Section 3 presents a nonlinear multiobjective tabu search approach. Section
4 is devoted to scatter search applied to nonlinear optimization. Section 5 gives some test
problems for nonlinear multiobjective problems. Section 6 contains conclusions.

2 Notation and general methods

Formally, we can state a quantitative decision making as follows. Decisions have a quan-
titative character, a decision(or solution) x ∈ Ex, where Ex denotes a decision space,
and X ⊆ Ex is a set of admissible decisions. We have functions f1, f2, . . . , fr, de-
fined over a set of situations X × V , where V is a finite set of uncertain factors val-
ues. Then for each situation (x, v), where x ∈ X and v ∈ V , we have a vector function
F (x, v) = (f1(x, v), f2(x, v), . . . , fr(x, v)). For deterministic problems the vector function
F (x) determines the quality of the decision x.

2.1 Non-dominance

We will refer to an objective function vector as a point. The point F (x) dominates the
point F (x′) if and only if F (x) ≥ F (x′) and F (x) 6= F (x′) (i.e. if ∀i : fi(x) ≥ fi(x

′)
and fi(x) > fi(x

′) for at least one objective i). The point F (x) is dominated by the point
F (x′), if the point F (x′) dominates the point F (x). If a point is not dominated by another
point, it is called a non-dominated point.

Solution x is superior to solution x′ if the point F (x) dominates the point F (x′).
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Solution x is inferior to solution x′ if the point F (x′) dominates the point F (x). If the
point F (x) is non-dominated, then x is non-inferior.

The set of all non-inferior solutions is sometimes refereed to as the Pareto Optimal
Set. The set of all non-dominated points in the objective space is refereed to as the Pareto
Frontier.

2.2 Choice function

In order to obtain a reference set of solutions that encourages the search toward the Pareto
frontier, an optimality principle is used: “Selection by a number of dominant criteria” [19].

For all x, x′ ∈ X, let q(x, x′) be the number of criteria for which the decision variable
x′ improves the decision variable x, then QX = maxx′∈X q(x, x′), x ∈ X can be see as a
discordance index if x is assumed to be preferred to x′. Then the Kramer Choice function
is defined as follows: CK(X) = {x′ ∈ X|QX(x′) = minx∈X QX(x)}.

3 Nonlinear multiobjective tabu search

Tabu Search TS is a strategy based on the use of prohibition-based techniques and “intel-
ligent” schemes as a complement of basic heuristic algorithms like local search, with the
purpose of guiding the basic heuristic beyond local optimality.

In a nonlinear optimization context, a standard move is m(x) = x + hd, where d is a
specified direction vector, such as a generalized gradient, and h is a scalar step size. In
our approach we use a similar strategy. By the standard TS approach, a move is classified
tabu and excluded from consideration if it reverses a recent previous move. An adaptation
of Tabu search strategies for preventing move reversals in nonlinear context is applied, see
[11]. A sequential fan strategy is used to create our neighborhood. Also, a TS strategy
to guide the search toward the Pareto frontier is introduced. A weighted sum approach
is used as a decision rule to transit from one solution to another. Recency and frequency
based memory for diversification are used in our approach.

3.1 Directional search strategy

3.1.1 Neighborhood (move description)

In the following we suppress reference to the indexes of the different variables for no-
tational convenience, and use the following move: m(x) = x

⊕

htd where we have ht

as the step sizes at iteration t, ht positive. Let ∆xt = htd, and assume the con-
dition [x − ∆xt, x + ∆xt] ∩ [a, b] 6= ∅ holds. Then, ∆xt ≤ |x − a| if the operation
in the move is “-”, in this case d = |x − a|, and ∆xt ≤ |b − x| if the operation in
the move is “+”, then d take the value |b − x|, in both cases, x ranges over [a, b],
ht ∈ A = {r/fan : r is a random number in a set {2, 3, . . . , fan}}, where fan is the number
of trial solutions created, as explained above. In our implementation we propose to move
as maximum four variables, in the case of more than four variables we can use random
controlled and frequency memory to select the move-variables.
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3.1.2 Status tabu

We focus our attention on tabu conditions based on move reversals. For our purpose, we
will select variables as a basis for defining move attributes, identifying the change values
in going from one solution to another [11]. Tabu restrictions are imposed to prevent moves
that bring the values of variables “too close” to values they held previously. Specifically a
move is tabu if it creates a solution x which lies closer than a specified tabu distance dist
to any solution visited during the preceding t iterations.

The implementation of this rule is as follows: the variable x′ is excluded from falling
inside the line interval bounded by x − w(x′ − x) and x + w(x′ − x), where 1 ≥ w > 0,
when a move from x to x′ is executed. In our approach we use a tenure = 7 for the tabu
memory structure and one tabu list for each variable.

3.1.3 Memory structures

We briefly illustrate the meaning of the variables and memory structures used. An ele-
mentary move is indexed by the variable ht, the step size. The tabu distances are saved in
records that contain the lower and the upper bounds of these distances,
tabu[current].lower and tabu[current].upper, where current is a pointer to tabu
list, tabu[current].IX and tabu[current].IY stores the “from” and “to” variables, we
have a similar tabu list for each variable. Our tabu lists are a circular one.

Our approach uses a frequency-based memory denoted by residence, this is a record
that has two entries, residence[j].range contains the upper bound of a sub-range of
[a, b], and residence[j].freq contains the number of times that the associated sub-ranges
have been visited, j is an index. A similar record is associated to each variable.

3.1.4 Candidate list strategy

We use a simplified version of a sequential fan strategy as candidate list strategy. The
sequential fan generates p best alternative moves at a given step, and then to create a fan
of solution streams, one for each alternative. The best available moves for each stream are
again examined, and only the p best moves overall provide the p new streams at the next
step. In our case, taking p = 1, we have in each step for ht ∈ A one stream and several
points equal to fan.

3.1.5 Search by goals

Our implementation uses as move attribute, variables that change their values as result
of the move. We represent change represented by a difference of values fi(x

′) − z∗i ∀i =
1..r , x′ ∈ X where x′ was generated from x by a recent move, x is a current solution and
Z∗ is a reference solution, Z∗ = (z∗1 , . . . , z∗r ).

A thresholding aspiration is used to obtain an initial set of solutions as follows: with-
out lost generality, assume that every criteria is maximized. Notationally, let ∆f(x′) =
(∆f1(x

′), . . . ,∆fr(x
′)) where ∆fi(x

′) = fi(x
′) − z∗i , i ∈ {1, . . . , r}.
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Let

∆fi(x
′) =







preference if ∆fi(x
′) > 0,

indifference if ∆fi(x
′) = 0,

nonpreference if ∆fi(x
′) < 0,

A goal is satisfied, allowing x′ to be accepted and introduced in S if (∃∆fi(x
′) =

preference) or (∀i ∈ {1, . . . , r}[∆fi(x
′) = indifference]), otherwise it is rejected.

The point Z∗ is updated by z∗i = max fi(x
′),∀i ∈ {1, . . . , r}, x′ ∈ S.

3.1.6 Weighted sum approach

In order to measure the quality of the solution we propose to use in our tabu search ap-
proach an Additive Function Value AFV with weighting coefficients λi(λi ≥ 0), represent-
ing the relative importance of the objectives. We want to set the weights (λi, i = 1, . . . , r)
so that the solution selected is closest to the new aspiration threshold. Therefore each
component in the weight vector is set according to the objective function values. We would
give more importance to those objective that have greater differences between the quality
of the trial solution and the quality of the reference solution. The influence is given by an
exponential function exp(−si), where si is obtained as follow

si =
|fi(x′)−z∗

i
|

|z∗
i
|

λi = 2 − exp(−si)

AFV (x′) =
∑

i=1,r

λi∆fi(x
′)

Note that in the cases of greater differences the value of the AFV is less modified that in
the cases of lesser differences, making that the chosen solution is close to the new aspiration
threshold.

3.1.7 Frequency-based memory and diversification strategy

Our diversification method employs a frequency memory to encourage the search to unvis-
ited regions or less visited regions. We accomplish this by dividing the range of variables
b − a into sub-ranges of equal size as in [14]. The threshold T determines the number of
times that one sub-range can be visited without penalizing. A diversifying movement is
executed when residence.freq[j] is greater than T . We modify the value of AFV (x′)

as follows: AFV (x′) = AFV (x′) − freq
freqtotal

× AFV (x′), where freq is an addition of the

entries of type residence.freq associated to the variables and subranges that hold the
condition freq(x′) > T , and freqtotal =

∑

i freqi, we would have for each variable a

threshold T . T is equal to max{Round(
∑subranges

i=1 freqi/subranges), 1}, where Round is
the closest integer. The frequency memory is maintained over all iterations and in the two
phases of this algorithm.
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3.1.8 Pseudo code for our TS approach

Skeleton of our Tabu

Procedure Taboo
{ (Initialization step)

Set a and b equal to the lower and upper bounds respectively of the variables
Generate a feasible solution x (the midpoint of each interval)
z∗ = F (x) (Setting the reference point)
S = x
for i = 1 to numiter

newelement = FALSE
UpdateThreshold

x′=Candidate(x)
Make tabudist(x, x′)
x = x′

z∗ = nextz∗

endfor }

Procedure Make tabudist(x, y)
{ (Record the lower and the upper bound of the interval where the variable is excluded)

tabu[current].lower=x− w(y − x)
tabu[current].upper=x+ w(y − x)
tabu[current].IX=x
tabu[current].IY=y
(update the current point of tabu list)
if current = tenure then
current = 1

else current = current+1 }

Procedure Update Criterion

{ if AFV (bestx′) < AFV (x
′)) then

AFV (bestx′) = AFV (x′)
bestx′ = x′}

Procedure Candidate(x)
{ tabuflag=TRUE

AFV (bestx′) = −∞
num tabu=0
repetition=0
while tabuflag

tabuflag = FALSE
for i = 1 to fan

x′=Move(x)
if not Is tabu(x′) or Aspiration(x′) then
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if Aspiration(x′) then Update Criterion

else if D(x′) 6= ∅ andE(x′) = 0 then Update Criterion

else
num tabu=num tabu+1

endfor
if num tabu = fan then
tabuflag=TRUE
Reduction tabu distance

x′ = Candidate(x)
endwhile }

We denote E as the set of efficient moves and D the set of deficient moves, where a
deficient move is a move that not satisfies the aspiration level, in otherwise the move is
efficient. Then, we define the best move as [m ∈ E(x′) : c(x′) = max{c(x′), x′ = m(x)}] if
E(x′) 6= ∅, in the case where E(x′) = ∅ and D(x′) 6= ∅ then, select [m ∈ D(x′) : c(x′) =
max{c(x′), x′ = m(x)}].

In the above algorithm we have the following escape mechanism: when the forbidden
moves grow so much that all movements become tabu and none satisfies the aspiration
level, a reduction mechanism is activated and the tabu distance in each list is reduced,
then the number of forbidden moves is reduced.

Function Variation(x)

{ UB=min{ b−x)
d

, (x−a)
d

}
h=2UB

s

variation=h ∗ d }

Function Move(x)
{ Step size

move = x+Variation }

Function Is tabu(x)
{(return the boolean value TRUE if, after the movement, the value x

fall inside one interval bounded by the value lower and upper contained
in the tabu list. The boolean value is FALSE otherwise)
Is tabu = FALSE
if iter ≤ list size

then point = 1
else point = current+1

while point 6= current

(x can be a portion of the decision variable)
if tabu[point].lower < x < tabu[point].upper then
Is tabu=TRUE
break

if point = list size then
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point = 1
else point = point+1

endwhile }

Procedure Aspiration(x)
(Return the boolean value TRUE if the function values,
after the movement, permit to be accepted the point
as probably non-dominated point)
newelement = FALSE
for i = 1 to r
delta[i] = f′ [xi] − z∗i

if (∃ delta[i] = preference i ∈ {1, . . . , r}) or
(∀i ∈ {1, . . . , r} [delta[i] = indifference])

then
X = X + x′

Obj = F (X)
newelement = TRUE
Update freq(x)
if freq(x′) − T > 0 then AFV (x′) = Penalize(AFV (x′))
next z∗ = max{fi(x

′)};x′ ∈ X
endif

endif }

Procedure Reduction tabu distance(x)
{(Change the bounds in the tabu list)

w=w/2
for all i belonging to tabu list

tabu[i].lower=tabu[i].IX - w(tabu[i].IY-tabu[i].IX)
tabu[i].upper=tabu[i].IX + w(tabu[i].IY-tabu[i].IX) }

4 Multiobjective scatter search “MOSS”

4.1 Overall view

Scatter Search operates on a set of solutions, the reference set, by combining these solutions
to create new ones. In our approach the mechanism for combining solutions is such that
a new solution is created from a linear combination of two other solutions.

We define the following sets:

X: a set of trial points, from which all others sets derive.

R: a set of current reference solutions, constituted by non-dominated elements of S.

R1: a set of high-quality non-inferior solutions, composing a subset of R.

R2: a difference set between R and R1.



bounded variables nonlinear multiple criteria optimization 25

T : a set of tabu solutions, composing a subset of R excluded from consideration to be
combined as first solution in a convex combination.

T1: a set of tabu solutions, composing a subset of R excluded from consideration to be
combined during t generation as second and third elements in the subset combined.

P : a pareto set, constituted of non-inferior solutions of S.

The reference set is constructed with the union of R1 and R2, where R1 = Ck and
R2 = P \ Ck.

Scatter Search has three main loops: 1) a “for loop” that controls the maximum
number of iterations, 2) a “while loop” that monitors the presence of new elements in the
reference set and 3) a “for loop” that controls the examination of all subsets that hold the
tabu restriction imposed.

As a basis for creating combined solutions we generate subsets x′ and for each x′ use a
solution combined method, generating solution in a line. We use weights to sample points
from the line.

Avoiding the duplicated strategies already generated can be a significant factor in
producing an effective overall procedure. The control is limited to these solutions that
hold the condition of being Pareto. Our algorithm is provided by “critical event design”
that monitors the current solutions in R and in the combined set Ω(x′). The elements
considered in the critical events design are the values of the objectives, and the decision
variables of the current Pareto solutions generated. The new solutions are put in the set
Ω(x′) if they do not belong to the set of critical events. If all subsets have been examined
then, the algorithm subtracts the non-dominated solutions ΩP ⊆ ∪Ω(x′) \ C, where C
is a critical event set. New elements are incorporated into R if |P ∩ R| < |P | where,
P ⊆ ΩP ∪ R.

4.2 Choosing subset of reference points

Our approach is organized to generate two different collections of subsets of R, which we
refer to as subset1 and subset2, see [12].
The type of subsets we consider are as follow:
subset1: 3-elements subsets of R1 where the second and third elements are the most
dissimile to the first.
subset2: 3-elements subsets derived from the two first elements of a subset1 by augmenting
it to include the most diverse solution relative to it from R2.

4.3 Memory structures

Let S size denote the current number of solutions in the trial point set. S size begins at
0 in an initialization step and is increased each time a new solution is added to the trial
points set, until reaching the value (max size - cardR) or all subsets of reference points
were examined.
At each step, S stores the current trial solution inX[trial[i]].x, the values of the objec-
tive functions are recorded in X[trial[i]].F where F contains several fields (f1, . . . , fr).
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X[trial[i]].T is a boolean variable identifying that the solution was combined in a pre-
vious iterations as first element in the subset combined. X[trial[i]].T2 records the time
that this solution will be forbidden as second and third solution in a subset combined .
A solution x is not permitted to be recorded if it duplicates another solution already in
R. We speed the check to see if one solution duplicates another by keeping information
about the objective functions and the decision variables. If one solution is duplicated, it
is eliminated.
Several associated location are defined: pareto[i], i = 1 to psize, indicates the position
in S of non-inferior current solutions, that is, X[pareto[i]] is a current pareto solution,
kramer[i], indicates the best non-inferior solutions, refset1[i] i = 1 to cardR1, the
high quality current Pareto solutions and refset2[i] i = 1 to cardR2, that take a role
as a diverse subset of current non-inferior solutions.

4.4 Pseudo code scatter search

Procedure Scatter

{ Set R = ∅
Set C = ∅
generation=0
For 1 to MaxIter

(Generate an initial reference set of trial points)
Taboo
(SS Phase)
P=ParetoSet(S)
if | P |> 1 then

R1 = KramerChoice(P )
R2 = P\ KramerChoice(P )
R = R1 ∪ R2
iter=0;
(In our implementation we take MaxGeneration = 2)

while(0 < MaxGeneration)or(ratio ≥ β)
Calculate the number of MaxSubset that includes at least
one new element
For counter = 1 to MaxSubset

Generate the new subset x′ from R with a number of
elements ranging from 2 to 3(optional)
Apply line search approach to obtain a set Ω(x′)
of new solutions

EndForMaxsubset

Obtain ΩP ⊆ Ω(x′) \ C
(ΩP is the current Pareto set)

If |P | = 1 then Break
ratio =| P ∩ R | / | P |
R1 = KramerChoice(P )
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R2 = P \ KramerChoice(P )
R = R1 ∪ R2
generation = generation+ 1
MaxGeneration = MaxGeneration− 1

endwhile
endif
endMaxiter }

Procedure Sigma

{ for i = 1 to S size
X[trial[p]].sum=

∑

j=1..r X[trial[p]].f[j] }

Procedure Is Pareto

{ if ∃i = 1..psize, j = 1..r : X[trial[p]].f[j] < X[pareto[i]].f[j]
then Is Pareto=true

else Is Pareto=false }

Procedure Critical Condition

{ if X[trial[p]].F=X[pareto[i]].F then
Critical Condition=true

else Critical Condition=false }

Procedure Is Critical

{ Is Critical=false
for i=1 to psize

if X[pareto[i]].sum=X[trial[i]].sum

if Critical Condition then
Is Critical=true

break }

Procedure Non Dominated

{ for p=2 to S size

if not Is critical(trial[p] and Is Pareto(trial[p]) then
psize=psize+1
pareto[psize]=trial[p] }

Procedure Pareto

{ Sigma

Sort

X[pareto[1]].F=X[trial[1]].F

psize=1
Non dominated }

Procedure KramerChoice

{(Records the index of the selected solution
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array and the cardinal of the choice set in size)
Q = r + 1
i = 1
while (i ≤cardR)

QI[i]=0
j = 1
while (j ≤cardR)

d=Discordance(R[i].F(x),R[j].F(x))
QI[i]=max(d,QI[i])
j = j + 1
ifQI[i]< Q then
Q = QI
size=1
selection[size]=i

else
size = size+1
selection[size]=i

endwhile
endwhile
KramerChoice=selection }

Combining Strategy
Let Ω(X) = x + $(x′ − x), for $ = 1/2, 1/3, 2/3,−1/3,−2/3, 4/3, 5/3, and x, x′ ∈ x′

The most dissimile solution relative to x′ is measured with the max-min criterion, that is,
maximize the minimum value of a dissimilarity measure. We take as dissimilarity measure
the Euclidean measure.

The strategy to create the Ω set is as follows:
Let x be the first element choice, x′ the second and x′′ the third, the selection of each

elements is makes with the max-min criterion then, we apply the following rules:

1. Generate new trial points on lines between x and x′.

2. Generate new trial points on lines between x′′ and x.

3. Generate new trial points on lines between x′′ and x′.

4. Generate one solution by applying x′ + x−x′

2 .

5. Generate one solution by applying x′′ + x−x′′

2 .

6. Generate one solution by applying x′′ + x′−x′′

2 .

In the cases 4, 5, and 6 generate new trial points on lines that join each reference point
with one of the trial points generated using convex combination methods. In this case the
search relies searches star from middle trial points. If we have only two points initially
then, the third point is obtained by linear combination of this two points.



bounded variables nonlinear multiple criteria optimization 29

In the special case where Ck = 1 then, the approach begins by selecting the first element
pertaining to R1, denoting it by x, the second element is selected from R2, denoting it by
x′, if the cardinal of R2 is greater than 1 then, the third element is selected from R2 to
maximize its distance from the first and second elements, denoting it by x′′, in other case
the third element is created by a linear combination of the two elements selected above,
and then to apply the above scheme of combination explained.

Procedure Combine

{ (Create subset type 1 and 2, and combine)
for i = 1 to cardR1

if not R[refset1[i]].T then
Let R[refset1[p]].x = x ∈ x′

Let the most dissimile R[refset1[p]].x the second element in x′

Set R[refset1[p]].T1=generation+tenure

Put the most dissimile R[refset1[p]].x relative to x′ the third element z
Create Ω(x′ + z)
Set R[refset1[p]].T1=generation+tenure

Set R[refset1[i]].T=TRUE
if cardR2 6= 0 then Combine2

endfor }
Procedure Combine2

{ (Create subset type 2)
Put the most dissimile R[refset2[p]].x relative to x′ ∈ x′

Create Ω(x′)
Set R[refset2[p]].T1=generation+tenure }

4.5 Restarting solutions

In order to build a new set S in the next iteration, we generate a new seed point using
the history of the search looking for the subranges unless visited taking the middle points
of these subranges as components of the new seed point, and then use the diversification
generator. Initialise the generation process with the solutions currently in R.

5 Computational experiments

In this section we will examine the performance of our algorithm on several test problems
with one, two and three variables since these may be plotted.

5.1 2-objectives test problems

5.1.1 Problem 1 Schaffer’s F2

First we examine the algorithm convergence properties and the diversity of the solutions
in the frontier using Schaffer’s F2 function [21].

f1(x) = x2 and f2(x) = (x − 2)2
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This is a simple function with a single decision variable and two objectives to be
minimized. The Pareto front is where the tradeoff exits between the two functions. That
is, for 0 ≤ x ≤ 2.00, one of the functions is decreasing while the other is increasing.

The problem was solved on the domain −100 ≤ x ≤ 100. Figure 1(a) shows the first
approximation to the Pareto set in the first generation obtained from tabu search, figure
1(b) shows that the points were well distributed over all Pareto frontier in this generation.

F2 is an easy problem for our MOSS, the initial reference solutions contains several
solutions on the frontier. The solutions quickly converge to Pareto set and distributed
over the Pareto frontier very well.

Figure 1(a) shows the last approximation to Pareto set in the forth generation obtained
from Scatter search, figure 1(b) shows that the points were maintained over all Pareto Front
in all generations.
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Figure 1: (a) Final approximation to Pareto Set. (b) Final approximation to Pareto
Frontier.

5.1.2 Problem 2 Schaffer’s F3

f31 =















−x if x ≤ 1,
−2 + x if 1 < x ≤ 3,
4 − x if 3 < x ≤ 4,
−4 + x if 4 < x .

f32 = (x − 5)2

This problem has two separate Pareto-Optimal set in the ranges [1, 2] and [4, 5]. Our
MOSS obtain exactly either ranges and a widely distribution points in the Pareto set. The
result is shown in the figure 2.

5.1.3 Problem 3 Multiple Local-Optimal

Next we compare our approach using the following function below [20].

f1(x) = sin(x) ∗ (1 + x/20)

f2(x) = cos(x) ∗ (1 + x/20)
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Figure 2: Final approximation to Pareto Set.

This is a function with a single decision variable and two objectives, to be minimized. It
has three local Pareto optimal regions in the domain 0 ≤ x ≤ 20, the right most completely
dominating the other two. Our approach obtained the global Pareto-optimal. The final
Pareto set is shows in figure 3(a), the figure 3(b) shows the final Pareto frontier. More
than 2000 solutions were obtained very quickly obtaining a well defined Pareto frontier.
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Figure 3: (a) Final approximation to Pareto set. (b) Final approximation to Pareto
Frontier.

5.1.4 Problem 4 Bi-Objectives with two variables

Now, let’s consider the next simple bi-objective problem of simultaneously minimizing [4]:

f1(x1, x2) = x2
1 + x2

2

f2(x1, x2) = (x1 − 5)2 + (x2 − 5)2
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in a region of the objective space, defined by −5 ≤ x1 ≤ 10 and −5 ≤ x2 ≤ 10. The
objective function has its minimal points at (0, 0) and (5, 5) respectively. The figure 4
shows the Pareto-optimal frontier.Observe that was obtained a widely Pareto frontier.
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Figure 4: Bi-objectives with two variables final approximation to Pareto Frontier.

5.1.5 Problem 5 Objective with one and three variables

We studied two new examples [15]. The first is the following function:

f1(x) = 3 cos(x)

f2(x) = 2 sin(x)

The second is the following:

f1(x1, x2, x3) = 3 cos(x1)
∏

i=2,3

xi

f2(x1, x2, x3) = 2 sin(x1)
∏

i=2,3

xi

The range of x1 ∈ (−π, π] and the range of all the other variables are [0, 1]. The goal
of the process is to maximize the objectives and to obtain a set of points spread along
the Pareto set. Figure 5(a) shows the last approximation to Pareto frontier in the case
of one variable. The figure 5(b) shows the last approximations to Pareto frontier with
three variables. Observe that if x2 = 1 and x3 = 1 the Pareto frontier will be the same as
in the case of one variable. In the last case with three variables, our Pareto frontier was
approximately the same as in the case of one variable showing that was obtained a good
converge to the Pareto frontier.

5.1.6 Problem 6 Himmelbau’s Function

The function has four equal height peaks, this function has been used by several authors
[20].

f1(x, y) = 5 − ((x2 + y − 11)2 + (x + y2 − 7)2)/200



bounded variables nonlinear multiple criteria optimization 33

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F1

F
2

Final approximation to Pareto frontier

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

F1

f2

Final approximation to Pareto frontier

Figure 5: (a) Last approximation to Pareto set. (b) Final approximation to Pareto Fron-
tier.

f2(α, β) = f1, where α = 2x, β = 2y

The decision variables x1 and x2 ranges in the interval [−5, 5]. In this case, our current
approach obtained a good distributed Pareto frontier but only one local Pareto-optimal
set. The figures 6(a) and 6(b) show the final approximation to Pareto set and Pareto
frontier.
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Figure 6: (a) Final approximation to Pareto set. (b) Final approximation to Pareto
Frontier.

5.1.7 Problem 7 Sin-Sin Function

Now we study the following function described in [6]:

f1(x1, x2) = sin(x2
1 + x2

2 − 1)

f2(x1, x2) = sin(x2
1 + x2

2 + 1)

where x1 and x2 ranges in the interval [0, 3Π/4]. Here, the function f1 take your maximum
value in a point x2

1 + x2
2 = π/2 + 1 and f2 in the point x2

1 + x2
2 = π/2 − 1. Figures 7(a)

and 7(b) show the final approximation to a widely diversity Pareto set and a well defined
Pareto frontier respectively.
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Figure 7: (a) Final approximation to Pareto set. (b) Final approximation to Pareto
Frontier.

5.1.8 Problem 8 n-Objective FON Function

The following function shown bellow has the Pareto set constituted with all solutions in
x∗

i ∈ [−1, 1] for all i (see figure 8(a)).

f1(x) = 1 − exp(−(x1 − 1)2) − (x2 + 1)2

f2(x) = 1 − exp(−(x1 + 1)2) − (x2 − 1)2)

−2 ≤ xi ≤ 2, i = 1, 2
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Figure 8: (a) Final approximation to Pareto Frontier for Problem 8. (b) Final approxi-
mation to Pareto set for Problem 9.

5.1.9 Problem 9(a) n-Objective FON1 Function

The following function shown below has x∗
i = −1/ 2

√
n for all i as the minimum solution for

fi and x∗
i = −1/ 2

√
n for all i as the minimum solution for f2. The Pareto set is constituted

with all solutions in x∗
i ∈ [−1/ 2

√
n, 1/ 2

√
n] for all i.

f1(x) = 1 − exp(−
n

∑

i=1

(xi −
1
2
√

n
)2)
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f2(x) = 1 − exp(−
n

∑

i=1

(xi +
1
2
√

n
)2)

−4 ≤ xi ≤ 4 i = 1, 2, . . . , n

The Pareto set in the above problem is constituted with all solutions in x∗
i = [−1/

√
n, 1/

√
n],

in our case our approach obtained a well distributed set of points in this range for n = 2.
Figure 8(b) shows the last approximation to Pareto Set with two variables.

5.2 3-objectives test problems

5.2.1 Problem 9(b) 3-Objective Ellipsoid Function

This is a 3-objective function of two variables to be maximize. The representation of this
multiobjective problem in the objective space is an ellipsoid, in this case the Pareto set in
the objective space covers 1/8th part of the total space size, see[15].

f1(x1, x2) = 3 cos(x1) cos(x2)

f2(x1, x2) = 2 cos(x1) sin(x2)

f3(x1, x2) = 2 sin(x1)

with x1 ∈ [−π/2, π/2] and x2 ∈ (−π, π].
The following application is an ellipsoid function with 4 variables, where the variables

xi ∈ [0, 1] for i = 3, 4.

f1(X) = 3 cos(x1) cos(x2)Πi=3,4xi

f2(X) = 2 cos(x1) sin(x2)Πi=3,4xi

f3(X) = 2 sin(x1)Πi=3,4xi

Figure 9(a) shows last approximation to Pareto frontier, obtaining a widely Pareto
frontier. Figure 9(b) shows the last approximation to Pareto frontier with four variables.
Observe that in this case the Pareto frontier is the same as in the above case when
x3 = x4 = 1. In our case either frontier obtained are approximately the same.
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5.2.2 Problem 10 3-Objective Sphere Function

The following test problem have an objective search space where the Pareto frontier is
constituted by an spherical surface of unit radio.

f1(x1, x2, x3) = (1 + x3) cos(x1) cos(x2 + π/4)

f2(x1, x2, x3) = (1 + x3) cos(x1) sin(x2 + π/4)

f3(x1, x2, x3) = (1 + x3) sin(x1)
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0 ≤ x3 ≤ 1
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Figure 10: (a) Final approximation to Pareto set. (b) Final approximation to Pareto
frontier.

Figures 10(a) and 10(b) show the last approximation to Pareto set and Pareto frontier
respectively. The real Pareto set for the above problem is as follows [7]: 0 ≤ x1 ≤ π/2,
−π/4 ≤ x2 ≤ π/4, x3 = 0, and the Pareto frontier is the unit sphere in the first quadrant.

Introducing difficulties across the Pareto frontier

The following is the sphere function, but note that the variables are mapped to the meta-
variable vector θ.

f1(θ, r) = (1 + r) cos(θ1) cos(θ2)

f2(θ, r) = (1 + r) cos(θ1) sin(θ2)

f3(θ, r) = (1 + r) sin(θ1)

θi =
π

2
xi, i = 1, 2

0 ≤ xi ≤ 1, i = 1, 2

r = x2
3 and − 1 ≤ x3 ≤ 1

The Pareto frontier occurs at x∗
3 = 0 and the function values satisfy the following

condition:
∑

(f∗
i )2 = 1, [7]. Figures 11(a) and 11(b) show the approximation to Pareto

set and Pareto frontier respectively.
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Figure 11: (a) Final approximation to Pareto set. (b) Final approximation to Pareto
frontier.

5.2.3 Problem 11 3-Objective DTLZ7 Function

This problem has a disconnected set of Pareto-optimal regions. Minimize the following
function:

f1(x1) = x1,

f2(x2) = x2,

f3(X3) = (1 + g(X3))h(f1, f2, g),

where g(X3) = 1 + 9
2

∑

i=3,4 xi, h(f1, f2, g) = 3 − ∑2
i=1[

fi

1+g
(1 + sin(3πfi))], subject to

0 ≤ xi ≤ 1, for i = 1, 2, 3, 4.
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Figure 12: Final approximation to Pareto frontier.

This test problem has 4 disconnected Pareto-optimal regions in the objective space.
The functional g has in our prove 2 decision variables and the total number of variables
was 4. The Pareto-optimal solutions corresponds to X3 = 0. This test an algorithm’s
ability to maintain subsets in different Pareto-optimal regions. The result is show in the
figure 12, it shows that the algorithm was able to find stable and distributed subsets in
all four disconnected Pareto-optimal regions.



38 R. Beausoleil

5.2.4 Problem 12 3-Objective Comet Function

This function has the comet-like Pareto frontier. Starting from a widely spread region,
the Pareto frontier continuously reduces to thinner region [7]. This is a hard problem for
any multiobjective evolutionary algorithm.

Minimize the following function:

f1[x1, x2, x3] = (1 + x3)(x
3
1x

2
2 − 10x1 − 4x2)

f2[x1, x2, x3] = (1 + x3)(x
3
1x

2
2 − 10x1 − 4x2)

f3[x1, x2, x3] = 3(1 + x3)x
2
1
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Figure 13: (a) Final approximation to Pareto set. (b) Final approximation to Pareto
frontier.

The Pareto-optimal surface corresponds to x∗
3 = 0 and for −2 ≤ x∗3

1 x∗2
2 ≤ 2 with

1 ≤ x∗
1 ≤ 3.5. The figures ?? and 13 show the last approximation to Pareto set and Pareto

frontier respectively. It was obtained a distributed approximation to Pareto frontier but
the approximation to Pareto set still not satisfy our expectations.

Our experiments were run with the following parameters: maxiter=100, maxgenera-
tion=2, the numbers of iteration in Tabu was 1000, fan=30, β = 0.5, but in fewer iterations
(less than 40) our approach obtain a well defined Pareto frontier.

6 Conclusions

In this paper we have presented an adaptation of the Scatter Search method to continuous
vectorial optimization using an adaptation of Tabu Search to continuous variables as a
diversification generator. Several test problems to demonstrate the ability of our approach
were run, in the first 10 problems the convergence to the Pareto frontier was good, and
was obtained a widely Pareto set and Pareto frontier, in the Comet problem the algorithm
had trouble, finding few Pareto optimal solutions. We can conclude that the application of



bounded variables nonlinear multiple criteria optimization 39

a diversification strategy, the use of a choice function to separate the reference set points
and an strategy to combine solutions seems to be a good approach in finding in a few
generation a good approximation to Pareto frontier. In a future work we will incorporate
new memories structures inside our current approach and another escape mechanisms
trying to improve the current methodology, and to apply it to more complex test problems.
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