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Abstract

The article is devoted to examining the so-called local-equilibrium approximations
used while modeling turbulent flows. The dynamics of a far plane turbulent wake
are investigated as an example. In this article, we analyze these approximations by
using the method of differential constraints. We show that some algebraic models
based on using the local-equilibrium approximation can be interpreted as equations
of invariant manifolds generated by the models under consideration. Reduction of the
models on the corresponding invariant manifolds made it possible to find self-similar
solutions and to separate explicit solutions. Moreover, some empirical constants may
be calculated and their obtained values are close to the recommended quantities.

Keywords: local-equilibrium approximation, turbulent wake, method of differential con-
strains, invariant manifold, self-similar solutions.

Resumen

El art́ıculo trata de examinar el llamado equilibrio local de aproximaciones usado
cuando se modelan fluidos turbulentos. La dinámica de una estela turbulenta plana
es estudiada como un ejemplo. Analizamos estas aproximaciones usando el método
de restricciones diferenciales. Mostramos que algunos modelos algebraicos basados
en el uso de la aproximación de equilibrio local pueden ser interpretadas como ecua-
ciones de variedades invariantes generadas por los modelos bajo consideración. La
reducción de los modelos a las variedades correspondientes hicieron posible encontrar
soluciones auto-similares y separar soluciones expĺıcitas. Es más, algunas constantes
emṕıricas pueden ser calculadas y los valores obtenidos son cercanos a las cantidades
recomendadas.
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1 Introduction

The method of differential constraints advanced by Cartan and Yanenko is of a special
interest in view of its application to Parametric Turbulent Models. A concept of algebraic
expressions for the n-order moments of statistical characteristics of turbulent flow as the
equations of invariant manifolds of the corresponding transport equations enables us to
examine the closure procedure for momentum equations. The invariant manifolds were
used in [1], [2] for investigating the problem of the development of a shearless mixing
layer in the third-order closure model wherein we showed that this approach may be used
to obtain new reductions of the models under consideration and to construct a class of
explicit solutions. Due to the differential constraints derived, it was established that the
equation of the invariant manifold (differential constraints of the model) coincides with
the classical tensor-invariant Hanjalic–Launder algebraic model of the triple correlations
for an unstratified flow and with the Zeman-Lumley model for a stratified flow.

The mathematical tools necessary for the expression of the above-mentioned concept
are provided by Symmetry Analysis [3]. We begin with a preliminary discussion and basic
notions.

1.1 Differential constraints and algebraic parameterizations of higher
moments

We recall that the statistical moments method of turbulent flows structure description
is based on representation of sought quantities as a sum of mean value and turbulent
fluctuations, as suggested by Osborne Reynolds. It is well-known that using Navier–
Stokes equations and the averaging process, we can obtain the transport equations for
moments of arbitrary order but these equations contain turbulence correlations of the
next higher order. Therefore, closure of equations cannot be obtained by resorting to
equations for moments of higher and higher order; an exact turbulence model contains
infinite number of the transport equations and includes the infinite chain of Friedmann–
Keller equations [4]. Conversion of this infinite chain of the transport equations to a certain
closed set of equations is the so-called closure problem for momentum equations which
appears in Parametric Turbulent Models. Closed mathematical models are obtained by
an approximation of the correlations of a certain order in terms of lower order correlations
and mean-flow quantities. Analysis of those models shows that the closure procedures for
the infinite chain of momentum equations are based (often implicitly) on the assumption
that the system under consideration of differential equations admit invariant manifolds (or
sets). In fact, the derivation of the closure relationships (algebraic parameterizations of
higher moments) attracts various proposals (or hypotheses) for modeling the turbulence,
for example, the eddy-viscosity concept, eddy-diffusivity concept and others. As is pointed
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out by Chorin in [5], closure relations are, as a rule, derived using empirical hypotheses and
certain assumptions, which are often poorly justified. In approximate equilibrium shear
flow it is usually supposed that both the production and the dissipative terms dominate
in the kinetic turbulent equation. With the above-mentioned model assumption, the
closed form of the corresponding model is obtained by the algebraic relationship between
the mean-velocity gradient and the tangential Reynolds stress. The parameterization of
this type cannot explain and describe the effects of nonlocal phenomenon of turbulent
transport. To overcame this deficiency under such modeling, it is used the technique
based on constructing approximate algebraic parameterizations of higher order moments.
It is supposed that the problems which are not solved by means of the n-order models can
be solved by the (n+1)-order model of turbulence. For example, the triple correlations of
velocity field can be expressed by the first- and second-order moments in an algebraic form.
This law was employed in different forms, and an important step in the development is to
give up the direct link in the gradient-type form. As a rule, Hanjalic–Launder (Zeman–
Lumley) algebraic relationship for unstratified (stratified) flows is obtained by the triple
correlations equation in ignoring the convective and the gradient production terms.

In the framework of the theory of overdetermined systems, a checking procedure for
correct change of a differential equation by corresponding closed relationship consists in
examining on compatibility of an overdetermined system (the nth-order closure model)
with adjoint differential constraint (i.e., with the algebraic relationship for corresponding
momentum).

The method of differential constraints [6] provides the general approach to investigating
overdetermined systems. This approach can be used to justify algebraic models applied
to the calculation of the statistical moments. In practice, the classical methods (from the
theory of overdetermined systems) for studying overdetermined systems may be difficult,
because it is necessary to find solutions to overdetermined systems using the Requeir
theory.

The notion of invariant manifolds for a system of partial differential equations of a
very general form (an extension of the invariant relations introduced by Levi-Chevita and
Amaldy) allows us to find certain classes of differential constraints. In [7] the method
of local determining equations of a system of evolution equations was proposed which
generalizes the defining equations of the symmetry groups and makes it possible to find
invariant manifolds admissible by a system and then, to obtain explicit solutions of a
system.

The main aim of the present article is to analyze the local-equilibrium approximations
in the problem of a far plane turbulent wake. Local-equilibrium approximations of second-
order moments are used while modeling turbulent flows. We show that the use of local-
equilibrium approximation for the second-order Hanjalic–Launder model [9] of a far plane
turbulent wake dynamics is associated with a vanishing of the Poisson bracket for the
defect of the averaged longitudinal velocity component U1 and of the kinetic energy of
turbulence e. The result obtained may be considered as the criterion for correct using
the local-equilibrium approximations in modeling shear flows. The numerical calculations
demonstrate realizability of the criterion obtained for turbulent flows. Numerical modeling
is performed with the use of (e, ε, 〈u′v′〉)–model of turbulence [11] and the initial data
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compatible with experiment.
Moreover, we also analyze the local-equilibrium approximations of the third-order mo-

ments based on the above-mentioned concept in the problem of the dynamics of a momen-
tumless turbulent wake. Reduction of the models under consideration on the invariant
manifolds obtained made it possible to find self-similar solutions to the problem and to
separate a class of particular solutions.

1.2 Invariant manifolds of evolution equations

Let us briefly present the special terminology of Symmetry Analysis (see [3], [7] for more
details).

We recall some notions. It is well-known that a dynamical system of ordinary differ-
ential equations

xi
t = f i(~x), i = 1, . . . , n, ~x = (x1, . . . , xn)

generates local one-parametric group G1 with the vector field

Vf = f1 ∂

∂x1
+ · · · + fn ∂

∂xn
.

A regular manifold M given by the equations

g1(~x) = · · · = gs(~x) = 0, s < n,

is called the invariant manifold under the group G1 if

Vf (gi)
∣∣
M

= 0, 1 ≤ i ≤ s.

Invariant sets of the above dynamical system is invariant manifolds of the corresponding
one-parametric group G1.

Let us consider a system of evolution equations F

ui
t = F i(t, x1, . . . , xn, u

1, . . . , uk
λ, . . . , )

where i = 1, . . . ,m, uk
λ = ∂λuk/∂xλ1

1 . . . ∂xλn
n .

A set(manifold) H given by equations

hi(t, x1, . . . , xn, . . . , u
1, . . . , um, . . . , uk

λ, . . . ) = 0

is said to be the invariant set (manifold) of system F if

VF (hi)
∣∣
[H]0 = 0,

VF =
∂

∂t
+

m∑

i=1

F i ∂

∂u1
+

m∑

i=1

Dα(F i)
∂

∂ui
α

,

where α = (α1, . . . , αn), Dα = Dα1
x1
. . . Dαn

xn
.
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The invariant condition can be written in the following equivalent form

Dt(hi)
∣∣
[F ]0

∣∣
[H]0 = 0.

Here [F ]0 is ∞-prolongation (see [7]) of F with respect to x1, . . . , xn. The set [H]0 is
determined by analogy.

In an application of invariant relations between the system F and set (manifold) H we
demonstrate the following useful

Theorem 1.1 [7] Assume that the system F has an invariant set(manifold) of the form
H which is solved with respect to higher derivatives and the initial conditions are given
by ui

ni
(x0, t0) = ciki

, ciki
∈ R, then in some neighborhood of (x0, t0) ∈ R2 there exists a

unique smooth solution of F .

2 Hanjalic–Launder model for a far plane turbulent wake

dynamics

In shear flows the turbulence is said to be in the state of local-equilibrium when the pro-
duction of the kinetic energy of a turbulent motion is equal to the viscous dissipation
(P = ε). It is well known that at most cases the production P and the viscous dissipation
ε are not balanced in all field of the flow, although these quantities are a sufficiently close
to each other with respect to exponents of quantities. Moreover, the local-equilibrium
state partially has the nature of a hypothesis. Nevertheless, this approximation is realized
in the so-called layer of constant stress of turbulent boundary layer. In practical calcula-
tions, the approach based on using local-equilibrium approximations is widely employed
in mathematical modeling of thin shear layers and, as an example, the dynamics of a far
plane turbulent wake are investigated.

The aim of this section is to give an analysis of local-equilibrium approximations of
second-order moments which are used in modeling turbulent flows (see [10]) by the method
of differential constraints.

Two mathematical models are used to describe the flow in a far plane turbulent wake.
Model 1 is based on the classical (e, ε)–model (see [11]):

U0
∂U1

∂x
=

∂

∂y
〈u′v′〉, (1)

U0
∂e

∂x
=

∂

∂y
νt1

∂e

∂y
+ P − ε, (2)

U0
∂ε

∂x
=

∂

∂y
νt2

∂ε

∂y
+
ε

e
(Cε1P − Cε2ε). (3)

Here U0 is the velocity of a nonperturbed flow; U1 = U0−U denotes the defect of the aver-
aged longitudinal velocity component U1; the angle brackets 〈·〉 is the symbol of averaging;
νt1 , νt2 are the turbulent viscosity coefficients;

νt1 = Cµ
e2

ε
, νt2 =

νt1

σε
; (4)
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e is the kinetic energy turbulence, ε is the rate of dissipation of kinetic energy into heat;
and

P = 〈u′v′〉∂U1

∂y

is the production of the kinetic energy of turbulence due to the gradients of the averaged
velocity, where

〈u′v′〉 = Cµ
e2

ε

∂U1

∂y
≡ Cµeτ̂

∂U1

∂y
, (5)

with τ̂ = e/ε. In Model 2, the tangential Reynolds stress 〈u′v′〉 is determined from the
differential equation (see [9])

U0
∂〈u′v′〉
∂x

=
∂

∂y
νt3

∂〈u′v′〉
∂y

− Cφ1〈u′v′〉
ε

e
+Cφ2e

∂U1

∂y
, (6)

where νt3 = CsC
−1
µ νt1 . Thus, Model 2 includes equations (1)-(3) and (6). The formula (5)

is a consequence of employing the local-equilibrium approximation to equation (6). The
quantities σε, Cε1 , Cε2 , Cµ, Cφ1 and Cφ2 , Cs are empirical constant (Cφ2 = Cφ1Cµ). The
problem variables can be made dimensionless by using the characteristic length D, the
body diameter and the velocity scale U0.

2.1 Invariant manifold of Model 2

The algebraic model of local-equilibrium approximation (5) is derived from the closed
equations of Model 2 by assuming that terms describing convective and diffusive transfer
in (6) are negligible. The correct choice of an operator dominating in an equation at a
certain stage of flow development requires the estimation of the joint contribution from
all terms of the equation and must be justified (or refuted) by a certain formal procedure
based only on the equations of the model without invoking any physical hypothesis. This
derivation we present in the framework of the above-mentioned concept.

We consider the set D:

D = {e, τ̂ , U, 〈u′v′〉 : G1(e, τ̂ , U1, 〈u′v′〉) ≡ 〈u′v′〉 − Cµτ̂ e
∂U1

∂y
= 0}. (7)

Derivation of formula (5) can be related to the invariance of the set D with respect to the
flow generated by system (1)-(3), (6).

Together with equations (1)-(3) and (6) which govern the propagation of a turbulent
perturbation in a fluid behind a body, the equation for τ̂ plays a crucial role for studying
properties of system (1)-(3), (6). This equation is derived from equations (2),(3)and can
be written in the form:

∂τ̂

∂x
=

1
ε

∂e

∂x
− e

ε2
∂ε

∂x
=

U−1
0

{
1
ε

∂

∂y
νt1

∂e

∂y
+
P

ε
− 1 − e

ε2
∂

∂y
νt2

∂ε

∂y
+

1
ε
(Cε1P − Cε2ε)

}
=

U−1
0

{
1
ε

∂

∂y
Cµτ̂

2e
∂ε

∂y
+

1
ε

∂

∂y
Cµτ̂ eε

∂τ̂

∂y
+
P

ε
− 1−
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1
ε
τ̂
∂

∂y

Cµ

σε
τ̂ e
∂ε

∂y
− 1
ε
Cε1P + Cε2

}
.

At σε = 1 (this value is recommended in [11]) and Cε1 = 1 (the recommended value equals
1.4), the equation has the solution τ̂(x, y) ≡ τ̂h(x) = U−1

0 (Cε2 − 1)(x + x0). The theorem
below provides the criterion of the invariance of D:

Theorem 2.1 Let (U1, e, ε, 〈u′v′〉) be a sufficiently smooth solution to system (1)–(3),
(6), and let σε = Cε1 = 1. Assume that Cφ2 − Cφ1Cµ = Cµ(Cε2 − 1). Then, the set D is
the invariant manifold of system (1)-(3), (6) at τ̂ = τ̂h if and only if the Poisson bracket
is {e, U1} = 0.

The proof is based on direct calculation of the derivative ∂/∂xG1 which leads us (taking
into account (6)) to the formula

∂

∂x
G1 = −e∂U1

∂y
(τ̂hxU0Cµ + Cφ1Cµ − Cφ2) − τ̂hU0Cµ

[
∂e

∂x

∂U1

∂y
− ∂e

∂y

∂U1

∂x

]
.

Using the relationships between the model constants and the form of the function τ̂h, this
formula can be written as (the expression in parentheses equals zero)

∂

∂x
G1 = −U0Cµτ̂h{e, U1},

this completes the proof of the theorem.

Remark 2.1 Using the recommended values of the constants Cφ1 , Cµ, Cε2 from [9], and
calculating the right-hand of Cφ2 −Cφ1Cµ = Cµ(Cε2 − 1) which equals 0.081, we find that
Cφ2 is close to Cφ1Cµ = 0.252. Therefore, the value obtained Cφ2 differs only slightly from
Cφ2 = Cφ1Cµ recommended in [11], [9].

The simple example of flows where the Poisson bracket is {e, U1} = 0 are as follows: (1) –
a shearless flow with zero defect of the averaged longitudinal velocity component (U1 = 0);
(2) – a flow with the degenerate components ex = U1x = 0; a less trivial example (3) – a
flow where the production equals the viscous dissipation P = ε.

2.2 Computational results

To illustrate the above statement, we have carried out a series of numerical experiments
by using Models 1 and 2 with the initial conditions are given at the distance x0/D = 625.
Initial conditions are selected in accordance to the experimental data of [13] for degenerate
far plane turbulent wakes behind a cylinder. The initial distribution of the tangential stress
〈u′v′〉 is specified by formula (5). A finite difference algorithm for calculating, its test and
realization, and the results of its application to the problem of turbulent wake dynamics
were detailed in [19]. The computations are performed to double accuracy. Table 1
contains presents the quantity

δñ =
maxj |(Uh

1xe
h
y)ñj − (Uh

1ye
h
x)ñj |

maxj(|∇he|j , |∇hU1|j)
.
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which is considered as a function of the distance from the and, at x = xñ, characterizes
the mesh analog of the Poisson bracket. Here (Uh

1x)j, (Uh
1y)j

, (ehx)j, (ehy)
j
, (∇he)j, (∇hU1)j

are the finite-difference approximations of the first derivatives and gradients at the node
y = yj, j = 1, . . . , Ny − 1 ). Column 1 specifies the distance from the body x/D, and
columns II, III, IV presents δñ in the uniform meshes 1—3 with the parameters hx =
0.5, hy = 0.1; hx = 0.25, hy = 0.05; and hx = 0.125, hy = 0.025, respectively.

The calculations are based on Model 2 and indicate that the mesh analog of the Poisson
bracket is close to zero for all mesh parameters.

Tables 2 and 3 present the axial values calculated in Models 1 and 2, respectively, for
the turbulence energy e0 = e0(x) = e(x, 0), the rate of dissipation ε0 = ε0(x) = ε(x, 0) and
the defect of the averaged longitudinal velocity component Ud0 = U1(x, 0).

According to these data, which were obtained with the mesh parameters hx = 0.25,
hy = 0.05, wake parameters calculated in Models 1 and 2 close to each other. The
difference between the corresponding arrays of U1, e and ε is no more that the difference
between the respective axial values.

Thus, the above theorem and the calculations show that the approximation of local
equilibrium is applicable for determining the tangential Reynolds stress 〈u′v′〉 in the prob-
lem of dynamics of a far plane turbulent wake.

I II III IV
725 0.19 × 10−6 0.19 × 10−6 0.19 × 10−6

925 0.11 × 10−6 0.11 × 10−6 0.11 × 10−6

1125 0.66 × 10−7 0.65 × 10−7 0.65 × 10−7

1425 0.35 × 10−7 0.32 × 10−7 0.32 × 10−7

Table 1: Variation of δñ as a function of the distance from the body.

x/D e0
(1) ε0

(1) U
(1)
d0

725 0.145 × 10−3 0.253 × 10−6 0.357 × 10−1

925 0.112 × 10−3 0.148 × 10−6 0.335 × 10−1

1125 0.929 × 10−4 0.992 × 10−7 0.316 × 10−1

1425 0.749 × 10−4 0.626 × 10−7 0.294 × 10−1

Table 2: Axial values of the turbulence energy, the rate of dissipation and the defect of
the averaged longitudinal velocity component according to Model 1.

3 Linearized Prandtl model for a far plane turbulent wake
dynamics

The aim of the present subsection is to find exactly (without using numerical experiments)
a class of solutions to the problem under consideration which admits the use of the local-
equilibrium approximation. In other words, we obtain such solutions to the problem
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x/D e0
(2) ε0

(2) U
(2)
d0

725 0.145 × 10−3 0.253 × 10−6 0.358 × 10−1

925 0.113 × 10−3 0.148 × 10−6 0.335 × 10−1

1125 0.930 × 10−4 0.996 × 10−7 0.316 × 10−1

1425 0.747 × 10−4 0.631 × 10−7 0.294 × 10−1

Table 3: The same as in Table 2, but according to Model 2.

that the tangential Reynolds stress 〈u′v′〉 is realized in the form of the local-equilibrium
approximation.

We consider a simple model which enables us to express explicitly a class of such admis-
sible solutions. The following linearized models [13] based on the Prandtl approximation
of the turbulent viscosity are used: Model 3 includes the equation

U0
∂U1

∂x
=

∂

∂y
〈u′v′〉. (8)

Equation (8) is not closed, and as usually, it is assumed that

〈u′v′〉 = νT
∂U1

∂y
.

In addition to equation (8) we also use the turbulent energy transformation equation

U0
∂E

∂x
= νT

∂2E

∂y2
+
∂U1

∂y
〈u′v′〉 − C0νT

E

L2
. (9)

In equations (8), (9) C0 is an empirical constant, νT is the turbulent viscosity determined
by the formula

νT = χU1 maxL,

where χ is an empirical constant, U1 max(x) is the maximum value of U1 for any fixed value
of the variable x, L = L(x) is the characteristic turbulence length scale.

Unknown functions in the problem are U1, E and the scale of turbulence L which is
taken to be

L =
1
2
(L1 − L2), (H1)

where L1 and L2 are defined from the equalities U1(L1(x), x) = 1
2U1(ymax(x), x) for

y > ymax(x) and U1(L2(x), x) = 1
2U1(ymax(x), x) for y < ymax(x). We denote here by

ymax(x) the value of variable on which maxy∈R U1(y, x) is attained.
In Model 4 the tangential Reynold stress 〈u′v′〉 is determined from the equation (see

equation (6)):

U0
∂〈u′v′〉
∂x

= νT
∂2

∂y2
〈u′v′〉 − Cφ1Cµ〈u′v′〉

E

νT
+ Cφ2E

∂U1

∂y
. (10)
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3.1 Invariant manifold of Model 4

We prove that equation (10) admits the invariant set

DL = {νT , U1, 〈u′v′〉 : G1
L(νT , U1, 〈u′v′〉) ≡ 〈u′v′〉 − νT

∂U1

∂y
= 0} (11)

for certain class of solutions to (8), (9) (10).

Theorem 3.1 Let (U1, E, 〈u′v′〉) be a sufficient smooth solution of (8), (9), (10). Assume
that Cφ2 = Cφ1Cµ. Then the set DL is the invariant manifold of system (8), (9) (10) if
and only if ∂νT /∂x = 0.

By calculating the derivative DL with respect to x we deduce that

∂

∂x
DL = − (Cφ2 −Cφ1Cµ)E

∂U1

∂y
− ∂νT

∂x

∂U1

∂y
.

The proof is completed by taking into account the conditions of the theorem.

Remark 3.1 The equality Cφ2 = Cφ1Cµ coincides with the recommended relationship
between the empirical constants Cφ2 , Cφ1 , Cµ, see [9], [11].

Let us show that the equality ∂νT /∂x = 0 is realized for a self-similar solution to (8), (9),
(10).

We look for a solution to Model 4 in the following form: u = ua(y, t), e = ea(y, t),
w = wa(y, t) ≡ νTa∂ua/∂y where u(y, t) = U1(y, θ−1(t)), e(y, t) = E(y, θ−1(t)),
w(y, t) = 〈u′v′〉(y, θ−1(t)), νTa(t) = χumaxl(t) and l(t) = L(θ−1(t)); the sought functions
ua(y, t), ea(y, t), wa(y, t) to be determined in self-similar variables. Here

t = θ(x) ≡ U−1
0

x∫

x0

νT (s) ds.

Equations (8),(9) for ua(y, t), ea(y, t), wa(y, t) can be written as

uat =
∂2ua

∂y2
, (y, t) ∈ R × R+, (12)

eat =
∂2ea
∂y2

+
(
∂ua

∂y

)2

− C0
ea
l2
, (y, t) ∈ R × R+. (13)

The initial conditions for equations (8),(9)

U1(y, x0) = U0(y), E(y, x0) = E0(y), (14)

are assumed to be positive bell-shaped functions such that U0(y) → 0, E0(y) → 0 as
y → ±∞. We set

ua(y, 0) ≡ u0(y) = U0(y), ea(y, 0) ≡ e0(y) = E0(y). (15)
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Equation (12) has in R × R+ the following well-known self-similar solution:

ua(y, t) =
fa(ξ)√
1 + t

, ξ =
y√

1 + t
,

where fa(ξ) = F0

2
√

π
exp

(
− ξ2

4

)
, ξ ∈ R. The solution ua is obtained when the initial

function u0 ≡ ua(y, 0) = F0

2
√

π
exp

(
− ξ2

4

)
where F0 is a positive constant such that

F0 = |ua(y, 0)|L1(R). Due to symmetry of ua, the function l = l(t) is defined by the
equality ua(l(t), t) = 1

2ua(0, t). Then, we can find l by means of ua. By the form of
solution ua we easily find l which is denoted by la:

la(t) = 2
√

ln 2(1 + t). (16)

Then, we seek a self-similar solution to equation (13) in the form

ea(y, t) = (1 + t)αθa(ξ), (17)

where α is a constant, and θa(ξ) > 0 is a differentiable function. Substituting (16),(17),
and uay = − F0

4
√

π
ξ exp

(
− ξ2

4

)
(1 + t)−1 into (13), we obtain the equation

α(1 + t)α−1θa −
1
2
(1 + t)α−1ξθaξ

= (1 + t)α−1θaξξ +
F 2

0

16π
ξ2(1 + t)−2 exp

(
−ξ

2

2

)
− C0

4 ln 2
(1 + t)α−1θa.

Hence, we have the following condition: α = −1. Then the time factors in the equation
can be canceled. Thus, we have

Ac(θa) ≡ θaξξ +
1
2
ξθaξ +

(
1 − C0

4 ln 2

)
θa +

F 2
0

16π
ξ2 exp

(
−ξ

2

2

)
= 0. (18)

By symmetry, it is necessary to require that

θ′a(0) = 0. (19)

Taking into account the properties e0(y) at infinity, it is necessary that the following
boundary condition to be satisfied for the energy profile:

θa(∞) = 0. (20)

Thus, the problem of constructing the self-similar solution ea reduces to the problem
(18)–(20). It is well-known that homogeneous equation (18) has solutions with different
asymptotic behavior as ξ → ∞. These solutions depend on the parameter c. Thus, we
construct θa(ξ), separating the parameter c which is supposed to be chosen so that the
solution obtained satisfactory describes the known experiment data presented in [13].
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To find such a solution we consider the family of boundary value problems for equation
(18):

Ac(θa) = 0, θa(0) = µ, θa(∞) = 0, (21)

where µ is a positive parameter. We put

η =
ξ√
2
, C0 = 6 ln 2, D ≡ F 2

0

4µπ
, h(η) =

1
µ
θa(

√
2η).

Then equation (18) takes the form

hηη + ηhη − h = −Dη2 exp(−η2). (22)

Its solution h(η;µ) with allowance for the boundary conditions h(0;µ) = 1, h(∞;µ) = 0)
is

h(η;µ) = η

{
3
2
D
√
π[1 − Φ(η

√
2)] − (1 + 2D)

√
π√

2
[1 − Φ(η)]

}

+(1 + 2D) exp
(
−η

2

2

)
− 2D exp(−η2),

where Φ(z) ≡
√

2
π

z∫
0

exp
(
− s2

2

)
ds. The solution h(η;µ) defines the sought self-similar

solution θa(ξ) for µ = (3
√

2 − 4)F 2
0 /(8π) (in view of the condition (19) in accordance

with the equality h′(0;µ) = 3D(
√
π/2) − (1 + 2D)(

√
π/

√
2) and h(η;µ) is close to the

experimental data [13].
Noteworthy is an interesting property of the function h: it attains a maximum value

at η∗ > 0. The found numerical value C0 in the form C0 = 6 ln 2 is of importance for the
analysis of the asymptotic stability.

It is ease to check that the viscous turbulent coefficient νTa is constant. Indeed, by
the exact formulas for ua(y, t) and la(t), we can write

νTa = χ
fa(0)√
1 + t

2
√

ln 2
√

1 + t ≡ const.

Therefore, applying Theorem 3.1 we obtain that

〈u′v′〉(y, θ−1(x)) = wa(y, t) = νTa
∂ua(y, t)

∂y
≡ νTa

1
(1 + t)

∂fa(ξ)
∂ξ

satisfies equation (10) identically.
Thus, we showed that the local-equilibrium approximation is realized for the self-similar

solution ua(y, t), ea(y, t), wa(y, t) of Model 4.

Remark 3.2 There exists a connection between the invariant set DL and the existence of
steady-state solutions to a system constructed by the time depending scaling (y, t) → (ξ, s),
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s = ln(1 + t) which transforms the system

ut = ν−1
T

∂2w

∂y2
, w(y, t) = 〈u′v′〉(y, θ−1(t)), (23)

et =
∂2e

∂y2
+

(
∂u

∂y

)2

− C0
e

l2
, (24)

wt =
∂2w

∂y2
− Cφ1Cµw

e

ν2
T

+ Cφ2

e

νT

∂u

∂y
, (25)

into a system such that its a steady-state solution is determined by the self-similar solution
ua(y, t), ea(y, t), wa(y, t) of system (23)–(25). As a result, we obtain that there exists an
invariant manifold associated with an equilibrium state of the transformed system which
contains the steady-state solution (fa, θa, νTa∂fa/∂ξ).

Remark 3.3 Existence (and uniqueness) of an analytical in x solution of the Cauchy
problem to Model 3 together with proving convergence of the solution obtained to the self-
similar solution of Model 4 were established in [12].

4 Momentumless plane turbulent wake dynamics

The objective of this section is to examine an algebraic expression for the triple correlation
〈v3〉 of the transverse intensity of turbulence which generally used in certain second-order
closure models. The exposition is demonstrated on the base of the well-known problem of
the dynamics of a momentumless far turbulent wake in a homogeneous fluid.

Momentumless turbulent wakes behind bodies were considered in a number of works.
It has been shown (see, for example [18]) that momentumless turbulent wakes behave
quite differently from the turbulent wakes with a nonzero excess impulse. In particular,
the momentumless turbulent wake can be considered as the shearless turbulent flow. There
exists a sufficiently large number of publications [15]–[20] (comprehensive references can
be found therein) in which the results of experimental and theoretical investigations of
the dynamics of momentumless turbulent wakes are discussed. The results of laboratory
and numerical experiments demonstrate a faster decrease the defect of the longitudinal
velocity component in comparison with a wake flow behind towed body. As a result, a
turbulent wake, which is considered on a distance about 10 diameters behind a body, is
the shearless flow practically. The latter implies that the velocity of a flow coincides with
the incident stream velocity, the tangential Reynolds stresses equal to zero.

We begin the modeling study of a momentumless far turbulent wake using Model 5
based on the Millionshchikov’s quasinormality hypothesis for the parameterization of dif-
fusion processes for the triple correlation. Recall that according to this hypothesis, it is
assumed that all cumulants of fourth- and higher-order are negligible small in comparison
with the corresponding correlation functions.
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4.1 The governing equations to Model 5

To describe the flow in a momentumless plane turbulent wake the following third-order
closure model (see [21]) based on the use Millionshchikov’s hypothesis can be applied
(Model 5):

U0
∂〈v2〉
∂x

+
∂〈v3〉
∂y

= −Cε
〈v2〉
τ
, (26)

U0
∂〈v3〉
∂x

+ 3〈v2〉∂〈v
2〉

∂y
= −3

2
(Cε + CΦ1)

〈v2〉
τ
, (27)

U0
∂ε

∂x
= Cd

∂

∂y

(
τ〈v2〉 ∂ε

∂y

)
− Cε2

ε

τ
, (28)

where τ = e/ε, e = 3/2〈v2〉. The constants involved in the model with the lower case
letters are denoted by C∗∗. Here e, τ are the kinetic energy and the time scale of turbulence
respectively and 〈v2〉 denotes the one-point velocity correlation of the second-order.

Introduce the new variable t = θ(x) ≡ U−1
0 x and the function τ̂ = 〈v2〉/ε ≡ 2/3τ .

Using the new coordinates (y, t) system (26)–(27) can be rewritten in the form

∂〈v̂2〉
∂t

= −∂〈v̂
3〉

∂y
− 2

3
Cε

〈v̂2〉
τ̂
, (29)

∂〈v̂3〉
∂t

= −3〈v̂2〉∂〈v̂
2〉

∂y
− (Cε + CΦ1)

〈v̂3〉
τ̂
, (30)

∂ε̂

∂t
= Ĉd

∂

∂y

(
3
2
τ̂〈v̂2〉 ∂ε̂

∂y

)
− 2

3
Cε2

ε̂

τ̂
, (31)

where Cd = Cs/σε ≈ 0.2, Cε ≈ 1, CΦ1 ≈ 2, Cε2 ≈ 1.9. Here 〈v̂2〉 = 〈v2〉(θ−1(t), y),
〈v̂3〉 = 〈v3〉(θ−1(t), y) and ε̂ = ε(θ−1(t), y).

In addition, we indicate the equation for τ̂ which can be obtained from (29), (31)

∂τ̂

∂t
= − τ̂

〈v̂2〉

[
∂〈v̂3〉
∂y

+ δ1τ̂〈v̂2〉∂
2〈v̂2〉
∂z2

+ δ1τ̂

(
∂〈v̂2〉
∂y

)2]
+

δ1〈v̂2〉τ̂ ∂
2τ̂

∂y2
+ 2δ1τ̂

∂τ̂

∂y

∂〈v2〉
∂y

− δ1

(
∂τ̂

∂y

)2

〈v̂2〉 +
2
3
(Cε2 − Cε),

(32)

where δ1 = (3/2)Cd, δ1 ≈ 0.3 (see, for example [21]).

4.2 Invariant manifold of Model 5

We analyze the terms which vanish in a homogeneous situation. The most important
are diffusion terms and the most popular assumption is the generalized gradient diffusion
hypothesis (Hanjalic, Launder, see [14]) that in connection with Model 5 can be written
in the form

〈v̂3〉 = −Csτ̂ 〈v̂2〉∂〈v̂
2〉

∂y
. (33)
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¿From physical point of view, the way of derivation of the algebraic relationship for the
triple correlation was presented by Hanjalic and Launder [14] in the cases of axisymmetric
and plane jets.

The aim of this subsection is to clarify when the set

O = {〈v̂2〉, 〈v̂3〉, τ̂ : H1(〈v̂2〉, 〈v̂3〉, τ̂ ) ≡ 〈v̂3〉 + Csτ̂〈v̂2〉∂〈v̂
2〉

∂y
= 0}

is invariant under the flow generated by equation (30). At first, we present the criterion
of invariance O in a general form and then, find a class of solutions to system (29)-(31)
for which this criterion is fulfilled.

Theorem 4.1 Let {(〈v̂2〉, 〈v̂3〉, ε)} be a set of sufficiently smooth solution of (29)-(31).
Then the set O is the invariant manifold of system (29)-(31) if and only if

Cs
∂τ̂

∂t

∂〈v̂2〉
∂y

〈v̂2〉 + Csτ̂
∂〈v̂2〉
∂t

∂〈v̂2〉
∂y

+Csτ̂〈v̂2〉∂
2〈v̂2〉
∂t∂y

=

3〈v̂2〉∂〈v̂
2〉

∂y
+(Cε2 + CΦ1)

〈v̂3〉
τ̂
.

(34)

The proof of this theorem follows from the formula

∂

∂t
H1 = −3〈v̂2〉∂〈v̂

2〉
∂y

− (Cε2 + CΦ1)
〈v̂3〉
τ̂

+Cs
∂τ̂

∂t

∂〈v̂2〉
∂y

〈v̂2〉+

Csτ̂
∂〈v̂2〉
∂t

∂〈v̂2〉
∂y

+ Csτ̂〈v̂2〉∂
2〈v̂2〉
∂t∂y

.

The formula is obtained if we differentiate H1 with respect to t and replace ∂/∂t〈v3〉 by
means of equation (30).

Let us show that equality (34) is realized for a self-similar solution of system (29)–(31).
It is well-known that in the case of a nonstratified flow, the problem of the dynamics of
a momentumless plane turbulent wake admits a parametric group of scale transformation
that enables us to find a self-similar solution of the form

〈v̂2
a〉 =

f(ξ)
(t+ t0)2µ

, 〈v̂3
a〉 =

g(ξ)
(t+ t0)3µ

, ε̂a =
h(ξ)

(t+ t0)3µ+ν
, ξ =

y

L
, L = (t+ t0)ν (35)

where t0 > 0 is a parameter.
We look for a solution to (29)–(31) in the form

〈v̂2〉 = 〈v̂2
a〉, 〈v̂3〉 = 〈v̂3

a〉 ≡ −δ1τ̂h〈v̂2
a〉
∂〈v̂2

a〉
∂y

, ε̂ = ε̂a (36)

where τ̂(t, y) ≡ τ̂h(t, y) = (2/3)(Cε2 − Cε)(t + t0) solves equation (32) written for the
functions 〈v̂2

a〉, 〈v̂3
a〉, ε̂a (the expression in square brackets in (32) equals zero). Then, the
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original system has the form

2µf + (1 − µ)ξfξ − gξ −
2
3
Cεh = 0, (37)

−3ffξ − (1 − µ)ξgξ − (Cε + CΦ1)
gh

f
+ 3µg = 0, (38)

Cε(Cε2 − Cε) (ffξ)ξ − (1 − µ)ξhξ + (2µ+ 1)h − 2
3
Cε2

h2

f
= 0. (39)

A direct calculation yields that ν = 1 − µ and µ = 1. The last equality guarantees that
equation (38) is satisfied identically, due to relations (36), when
(Cd/2)(Cε2 + CΦ1) = 1 + Cd(Cε2 − Cε). Therefore, system (37)–(39) is transformed to
the ordinary differential equation for the profile f and the algebraic relationships for the
profiles g, h:

Cε(Cε2 − Cε) (ffy)y + [2 − Cε

(Cε2 − Cε)
]f = 0, (40)

g = −Cε(Cε2 − Cε)ffy, (41)

h =
3f

2(Cε2 − Cε)
. (42)

The sign of [2 − (Cε)/(Cε2 − Cε)] is determined by values of coefficients C∗∗ which are
experimentally known numbers.

The following aim is to find a solution to (40). The boundary value conditions for
equation (40) is determined by the physical model, we have f(y) ≡ 0 outside of turbulent
wake.

To solve this problem, we consider a family of solutions to (40) satisfying the conditions
f ′(0) = 0 (the symmetry condition of the profile f) and f(0) = f0 > 0. The existence and
uniqueness solution to this problem on (0,+∞) follows from [22]. The solution obtained
guarantees the existence of a symmetrical function f on (−∞,+∞) which solves equation
(40). The function f is positive on an interval (−y0,+y0), 0 < +y0 <∞ and f(±y0) = 0
where ±y0 → 0 as f0 → 0. Therefore, the size of support of the function 〈v̂2

a〉 depends on
the value f0.

Remark 4.1 The solution obtained 〈v̂2
a〉 makes sense only on the set

(R × [t0, T ]) \ {t = ±y0} due to the fact that both 〈v̂2
a〉yy and 〈v̂2

a〉〈v̂2
a〉y are discontinu-

ous functions on the line {t = ±y0}. This means that 〈v̂2
a〉 is not classical (and even

generalized) solution of the equation on the plane R× [t0, T ] but solves the boundary value
problem in [−y0,+y0] × [t0, T ], t0 < T with zero boundary conditions.

Once we have determined 〈v̂2
a〉, we can find 〈v̂3

a〉 and ε̂a. By means of a direct calculation,
we show that condition (34) holds for the triple of functions 〈v̂2

a〉, 〈v̂3
a〉, ε̂a under suitable

assumptions on the model constants. We have the following

Theorem 4.2 Let δ1 = Cs and (Cd/2) (Cε2 + CΦ1) = 1 + Cd (Cε2 − Cε), then formula
(34) holds for the functions 〈v̂2

a〉, 〈v̂3
a〉, ε̂a.
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Indeed, substituting in (34) the function 〈v̂2
a〉, 〈v̂3

a〉, ε̂a and taking into account the
relationships between the constants, we obtain that

∂

∂t
H1 =

3Cd

2
(Cε2 + CΦ1) ffy − 3 [1 + Cd (Cε2 − Cε)] ffy.

This completes the proof of the theorem.

Remark 4.2 The value obtained δ1 ≈ 0.3 is close to the recommend value Cs ≈ 0.25 in
formula (33).

Millionshchikov’s quasinormality hypothesis is known to be defective in some cases
that leads to physically contradictory results, see, [4]. For example, we obtained that the
boundaries of the turbulent wake are the functions which independent of t. The latter
circumstance is a consequence of the fact that the triple-correlation equation is of the first-
order without a dumping mechanism for triple correlations. The approach proposed in
[23] allows us to overcome this obstacle; the technique also includes a physically reasonable
way for constructing approximate algebraic parameterizations of higher moments. In the
second part of this section, we present a third-order model of turbulence to describe
correctly the dynamics of a momentumless plane turbulent wake.

4.3 The governing equations to Model 6

To obtain a closed model of turbulent transport that does not imply equality to zero of
the fourth-order cumulants, the closure procedure is performed at the level of the fifth
moments, i.e. it is assumed that the fifth-order cumulants are equal to zero. Therefore
(see, [1], [24]), the following third-order mathematical model can be used Model 2:

U0
∂〈v2〉
∂x

= −∂〈v
3〉

∂y
− 2

3
ε, (43)

U0
∂〈v3〉
∂x

= −∂〈C〉
∂y

− 3〈v2〉∂〈v
2〉

∂y
− C2〈v3〉 ε

e
, (44)

U0
∂ε

∂x
= Cd

∂

∂y

(
e

ε
〈v2〉 ∂ε

∂y

)
− Cε2

ε2

e
. (45)

We use the preceding notions for the quantities e = 3/2〈v2〉, ε, 〈v2〉 and 〈v3〉;
C = 〈v4〉 − 3〈v2〉2 is the fourth-order cumulant of the vertical velocity fluctuations. In
equations (43)–(45) the empirical constants C2, Cd, Cε2 are known from the previous
section. We complete the system by an algebraic parametrization for the fourth-order
cumulant C which can be written as

C = C1
e

ε

[
6〈v3〉∂〈v

2〉
∂y

+ 〈v2〉∂〈v
3〉

∂y

]
.

It is well-known that the contribution of the second term in the algebraic model for the
cumulant C is essential [24].
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It is convenient to introduce the new variable t = θ(x) ≡ U−1
0 x. Thus the governing

equations in the new coordinate (y, t) take the form:

∂〈v̄2〉
∂t

= −∂〈v̄
3〉

∂y
− α

〈v̄2〉
τ̄
, (46)

∂〈v̄3〉
∂t

=
∂

∂y

[
κτ̄ 〈v̄2〉∂〈v̄

3〉
∂y

]
− 3〈v̄2〉∂〈v̄

2〉
∂y

− γ
〈v̄3〉
τ̄
, (47)

∂ε̄

∂t
=

∂

∂y

[
δτ̄ 〈v̄2〉 ∂ε̄

∂y

]
− %

ε̄

τ̄
, (48)

where α = 2/3 and κ, γ, δ, % are constants which can be determined by the empirical
model constants; τ̄ = 〈v̄2〉/ε̄. Here 〈v̄2〉 = 〈v2〉(θ−1(t), y), 〈v̄3〉 = 〈v3〉(θ−1(t), y) and
ε̄ = ε(θ−1(t), y).

We can obtain a simplified model (“standard” second-order model of turbulence) if we
employ the local-equilibrium approximation to equation (47), replacing the equation for
〈v̄3〉 by the gradient-type algebraic parameterization

〈v̄3〉 = −3
γ
τ̄〈v̄2〉∂〈v̄

2〉
∂y

. (49)

4.4 Invariant manifold of Model 6

Let us introduce into consideration the following set

OL = {〈v̄2〉, 〈v̄3〉, τ̄ : H1
L(〈v̄2〉, 〈v̄3〉, τ̄ ) ≡ 〈v̄3〉 +

3
γ
τ̄〈v̄2〉∂〈v̄

2〉
∂y

= 0}. (50)

We show that system (46)–(48) admits an invariant manifold of the form (50). The
equation for τ̄ will be again crucial for our study of invariant sets of the system. This
equation is a consequence of equations (46),(48). Indeed, calculating the time derivative
for τ̄ and using equations (46),(48), we obtain

∂τ̄

∂t
= − τ̄

〈v̄3〉

[
∂〈v̄3〉
∂y

+ δτ̄ 〈v̄2〉∂
2〈v̄2〉
∂y2

+δτ̄
(
∂〈v̄2〉
∂y

)2]
+ δ〈v̄2〉τ̄ ∂

2τ̄

∂y2

+ 2δτ̄
∂τ̄

∂y

∂〈v̄2〉
∂y

− δ

(
∂τ̄

∂y

)2

〈v̄2〉 + %− α.

As the first result we have:

Theorem 4.3 Let {(〈v̄2〉, 〈v̄3〉, ε̄)} be a set of sufficiently smooth solutions of (46)-(48)
and 3/c̄2 = δ. Assume that 3/δ + 2α − γ = % − α and κ = δ. Then system (46)-(48)
admits the invariant set OL and its reduction on the set OL is of the form:

〈v̄2〉 = τ̂ ε̄, (51)

〈v̄3〉 = −δτ̂〈v̄2〉∂〈v̄
2〉

∂y
, (52)

∂ε̄

∂t
=

∂

∂y

[
δτ̄〈v̄2〉 ∂ε̄

∂y

]
− %

ε̄

τ̄
, (53)
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where the function τ̄(y, t) ≡ τ̄(t) solves the ordinary differential equation

dτ̄

dt
= (%− α) (a version of equation for τ̄ on the set OL). (54)

To show that OL is invariant under the flow generated by equation (47), it is sufficient
to check that

〈v̄3〉 = −δτ̄ 〈v̄2〉∂〈v̄
2〉

∂y

satisfies identically equation (47). The equation for τ̄(y, t) ≡ τ̄(t) can be rewritten in the
form

dτ̄

dt
= (%− α)

since the expression in square brackets (see, the equation for τ̄) equals zero due to the
formula

〈v̄3〉 = −δτ̄ 〈v̄2〉∂〈v̄
2〉

∂y
.

Now consider the equality

∂

∂t
H1

L =
∂〈v̂3〉
∂t

+ δ
∂

∂t

[
τ̄〈v̄2〉∂〈v̄

3〉
∂y

]
. (55)

Using equation (47) and taking into account that ∂τ̂/∂y = 0, we can rewrite formula (55)
in the form

∂

∂t
H1

L = κτ̄
∂〈v̄2〉
∂y

∂〈v̄3〉
∂y

+ κτ̄ 〈v̄2〉∂
2〈v̄3〉
∂y2

−3〈v̄2〉∂〈v̄
2〉

∂y

− γ

τ̄
H1

L + γδ〈v̄2〉∂〈v̄
2〉

∂y
+ δ

∂τ̄

∂t

∂〈v̄2〉
∂y

〈v̄2〉

−δτ̄ ∂〈v̄
2〉

∂y

∂〈v̄3〉
∂y

− 2δα
∂〈v̄2〉
∂y

〈v̄2〉 − δτ̄
∂〈v̄2〉
∂y

∂2〈v̄3〉
∂y2

.

As a result, we obtain

∂

∂t
H1

L = (κ− δ)τ̄
∂〈v̄2〉
∂y

∂〈v̄3〉
∂y

+(κ− δ)τ̄ 〈v̄2〉∂
2〈v̄3〉
∂y2

+

〈v̄2〉∂〈v̄
2〉

∂y

(
δ
∂τ̄

∂t
− 2αδ + γδ − 3

)
− γ

τ̄
H1

L.

It follows from the assumptions for model constants and the equation for τ̄ that

∂

∂t
H1

L =
γ

τ̄
H1

L.

Therefore

H1
L

∣∣
t=t1

= H1
L

∣∣
t=t0

exp
(
−γ

∫ t1

t0

τ̄−1ds

)
.

This completes the proof of the theorem.
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4.5 Solutions on invariant manifold

Theorem 4.3 enables us to reduce (46)-(48) to the algebraic differential expressions (51)-
(54) which can be easier analyzed. Indeed, to find a solution of the above system, we look
for a solution of equation (48) where τ̄ is determined by the formula τ̄ (t) = (%−α)(t+ t0).
Once we have determined ε̄, we can find 〈v̄2〉 and 〈v̄3〉 by formulas (51),(52).

We put at t = t0 the following physically correct condition:

ε̄(y, t0) = ε̄0(y) (56)

where ε̄0(y) is a nonnegative ”bell-shaped” function with a compact support. The functions
〈v̄2〉(y, t0) and 〈v̄3〉(y, t0) are determined by formulas (51),(52).

Set

θ ≡ θ(t) =
∫ t

0
τ̄2(p)dp, ς(θ) = τ̄(θ−1(t)), ψ(θ) =

1
ς3(θ)

and

ε̄(y, θ) = u(y, θ) exp(−
∫ θ

0
ψ(p)dp), where ε̄(z, θ) = ε̄(z, t).

The function θ(t) maps [0,+∞) onto [0,+∞) and for u we have:

∂u

∂θ̂
=

∂

∂y

[
δu
∂u

∂y

]
, where θ̂ =

∫ θ

0
exp(−

∫ ξ

0
ψ(p)dp)dξ, (57)

u(y, 0) = ε̄0(y). (58)

It is easy to check that θ̂ : [0,+∞) → [0,+∞). Therefore, in studying the Cauchy problem
for equation (53), we can base our analysis on investigation of transformed problem (57),
(58).

Remark 4.3 Equation (57) is usually called the porous medium equation. As it is well-
known, the porous medium equation appear in the description of a number of nonlinear
processes in filtration, heat propagation, diffusion and so on. Nonnegative solutions are
considered in the hole space for some time interval. The existence and uniqueness of
weak solutions of this type is by now well understood (see, [22]). This equation exhibits a
number of peculiar properties arising from its nonlinear and degenerate parabolic character.
In particular, if an initial data have compact support, then the same happens with u(·, θ̂)
for every θ̂ > 0 and there appears a free boundary that separates the regions u > 0 and
u = 0 that coincides in our problem with well-known experimental observations about finite
speed of propagation of turbulent wake in an incompressible fluid. The behavior of the free
boundary and of the solution near by the free boundary it is now well understood and can
be explained in the form of jump discontinuities for the quantity uy and Rankine–Hugoniot
conditions, see, [25] for a reference.

In contrast to previous Model 5 where the self-similar solution obtained was realized as a
solution with separating variables in Model 6 the self-similar solution, which comes from
differential equation (47) with diffusion operator for the triple correlation 〈v̂3〉, describes
correctly the momentumless wake propagation from physics point of view.
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Self-similar solution to our problem is a solution of the form

〈v̄2
a〉 =

f(ξ)
(t+ t0)2µ

, 〈v̄3
a〉 =

g(ξ)
(t+ t0)3µ

, ε̄a =
h(ξ)

(t+ t0)3µ+ν
, ξ =

y

L
, L = (t+t0)ν . (59)

If we choose ν = 1 − µ, then the original system is transformed to the system of ordinary
differential equations for the profiles f , q and h:

2µf + (1 − µ)ξfξ − gξ − αh = 0, (60)

κ

(
f2

h
gξ

)

ξ

− 3ffξ − (1 − µ)ξgξ − γ
gh

f
+ 3µg = 0, (61)

δ

(
f2

h
hξ

)

ξ

− (1 − µ)ξhξ + (2µ+ 1)h − %
h2

f
= 0. (62)

The free similarity exponent µ has to be determined from a solution of the obtained
nonlinear eigenvalue problem. This is a typical situation appearing in nonlinear diffusion
problems where a conservation law does not exist. To find a solution to system (60)–(62),
we use the existence of the invariant set obtained in Theorem 4.3. Setting that the model
constants satisfy the equalities from Theorem 4.3 and µ = %/3(% − α), we obtain that
system (60)–(62)) admits a reduction. As a result, we have the following boundary value
problem for h(ξ):

δ(w2
chhξ + (1 − µ)ξhξ)ξ = 0, wc = %− α, (63)

h(−∞) = 0, h(+∞) = 0. (64)

We note that equation (63) arises in the context of study self-similar solutions to the
porous medium equation. As a result, we have that there exists a unique solution h(ξ) to
problem (63)–(64) which coincides with the well-known Barenblatt’s solution [26].

Remark 4.4 Model 6 adequately reflects the behavior of some flow characteristics. The
calculated values µ ≈ 0.7, ν ≈ 0.3 agree well with the Kolmogorov’s law of decaying
isotropic turbulent flow. These quantities also close to recommended values in [15].

5 Conclusions

It has been shown that the method of differential constraints is an effective tool to analyze
parametric turbulent models for plane turbulent wakes that enables us to find new reduc-
tion of the models under consideration, and therefore to construct explicit solutions. An
important application of the presented approach is obtaining the functional and algebraic
relationships between various flow characteristics in exact form. Moreover, it is turned
out that some empirical model constants may be calculated and their obtained values
are sufficiently close to the standard quantities. It will avoid the need for an additional
empirical information for the turbulent flow characteristics.

It should be noted that the use of the local-equilibrium approximation is associated
with a vanishing of the Poisson bracket for the defect of the averaged longitudinal velocity
component U1 and the kinetic energy of turbulence e, its manifests the new effect for flow
characteristics.
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