Revista de Matemática: Teoría y Aplicaciones 2004 11(2): 25–33

CIMPA - UCR - CCSS ISSN: 1409-2433

SOME ASPECTS IN N-DIMENSIONAL ALMOST PERIODIC FUNCTIONS III

Vernor Arguedas* Edwin Castro[†]

Received/Recibido: 2 Apr 2004

Abstract

The properties of almost periodical functions and some new results have been published in [CA1], [CA2] and [CA3] In this paper we show some new definitions in order to analyze some singularities. For this functions we find some uniqueness sets in \mathbb{R} and \mathbb{R}^n . The paper finishes analyzing the relation of this functions and the function sinc.

Keywords: Almost periodic functions, structure theorem, Radon transform.

Resumen

Las propiedades de las funciones cuasiperiódicas y algunos resultados nuevos se han presentado en [CA1], [CA2] y [CA3]. En este artículo variamos un poco la definición para incluir cierto tipo de singularidades y encontramos para estas funciones algunos conjuntos numerables de unicidad en \mathbb{R} y en \mathbb{R}^n . El artículo termina analizando la relación entre estas funciones y la función sinc.

Palabras clave: Funciones cuasiperiódicas, teorema de estructura, transformada de Radon.

Mathematics Subject Classification: 42A75,43A60,35A22,46F12.

^{*}CIMPA, Escuela de Matemática, Universidad de Costa Rica, 2060 San José, Costa Rica. E-Mail: vargueda@amnet.co.cr

 $^{^\}dagger \text{CIMPA},$ Escuela de Matemática, Universidad de Costa Rica, 2060 San José, Costa Rica. E-Mail: <code>Hyperion32001@yahoo.com</code>

1 Some notations and reminders

Elementary properties of some sets of almost periodic functions have been published in [Ca], [CO], [A-P], [BO], [COR] This paper is a natural continuation of [CA1], [CA2] and [CA3]. We keep the basic notations and results.

Let us summarize some important results:

 $f: \mathbb{R}^N \to \mathbb{R}$ is an almost periodic function if $\forall \varepsilon > 0$ there is a N-dimensional vector L whose entries are positive and satisfies that $\forall y$ in \mathbb{R}^N there is an T in the N-dimensional box [y, y + L] (component wise) such that $|f[x + T] - f[x]| < \varepsilon$ for all x in \mathbb{R}^N .

Let $x \in \mathbb{R}^N$, x[[i]] denotes the *i*-th component of x. We write x > 0 if x[[i]] > 0, i = 1, ..., N.

If x, y are in \mathbb{R}^N we write:

$$|x - y| := \begin{pmatrix} |x[[1]] - y[[1]]| \\ \vdots \\ |x[[N]] - y[[N]]| \end{pmatrix}.$$

In the case of the usual functions sin, cos, exp, sinc, we write: $\sin : \mathbb{R}^N \to \mathbb{R}$ as

$$\sin \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix} := \sin(x_1) * \dots * \sin(x_N)$$

and the same definition holds for the other functions. In general we extend in the multiplicative way any finite family of functions.

A set $E \subset \mathbb{R}^N$ is called relatively dense (r.d) if there is an $L \in \mathbb{R}^N$, L > 0 such that for all $a \in \mathbb{R}^N$, $[a, a + L] \cap E \neq \emptyset$.

There are many examples of r.d sets, for instance:

- \mathbb{Z} and $p\mathbb{Z}$, which that $p \in \mathbb{R}$ and $p \notin \mathbb{Z}$, are r.d in \mathbb{R} .
- \mathbb{Z}^N , $p_1\mathbb{Z} \times \ldots \times p_N\mathbb{Z}$, $p_i \notin \mathbb{Z}$, $i = 1, \ldots, N$ are r.d in \mathbb{R}^N .
- If A is an r.d set in \mathbb{R}^N and B is an r.d set in \mathbb{R}^M then $A \times B$ is an r.d set in \mathbb{R}^{N+M} .
- If A is an r.d set in \mathbb{R}^N and $\pi_i : \mathbb{R}^N \to \mathbb{R}$ is the *i*-th projection then $\pi_i[A]$ is an r.d set in \mathbb{R} .
- If $f: \mathbb{R}^N \to \mathbb{R}^N$ is an isometry then f[A] is an r.d set for any A r.d set in \mathbb{R}^N .
- Let G in \mathbb{R}^N a discrete non trivial additive subgroup then G is r.d. also a+G is r.d. for all a in \mathbb{R}^N .

 $C_b(\mathbb{R}^N,\mathbb{R})$ denotes the set of all bounded functions from $\mathbb{R}^N\to\mathbb{R}$ endowed with the norm $\|\cdot\|_{\infty}$

 $f[x_- + m]$ denotes the function $x \to f[x + m]$, m fixed.

We use the following definition:

Let $f: \mathbb{R}^N \to \mathbb{R}$ be an almost periodic function; f is said to have Bochner compact range (BCR) if for any N-dimensional sequence $(x_n)_{n\in\mathbb{N}}$ there is a subsequence $(x_{n_k})_{k\in\mathbb{N}}$ and $x_0 \in \mathbb{R}^N$ such that $f[x_- + x_{n_k}] \to f[x_- + x_0]$ uniformly when $k \to \infty$.

We proved in those papers results like:

- Let $f: \mathbb{R}^N \to \mathbb{R}$ be a continuous function, f is almost periodic iff $A = \{f[x_- \pm y], y \in \mathbb{R}^N\}$ is relatively compact in $C(\mathbb{R}^N, \|\cdot\|_{\infty})$.
- f is almost periodic iff for any sequence $(y_n)_{n\in\mathbb{N}}$ there is a subsequence $(y_{n_k})_{k\in\mathbb{N}}$ and a function $g:\mathbb{R}^N\to\mathbb{R}$ such that $f[x_-+y_{n_k}]\to g$ in $C(\mathbb{R}^N,\|\cdot\|_{\infty})$.
- Let $f: \mathbb{R}^N \to \mathbb{R}$ be a uniformly continuous bounded function, $(y_n)_{n \in \mathbb{N}} \subset \mathbb{R}^N$ be a sequence such that $f[x_- + y_n] \to g[x_-]$ uniformly, and let $(x_n)_{n \in \mathbb{N}} \subset \mathbb{R}^N$ be a sequence such that $x_n \to x_0$. Then $f[x_- + y_n + x_n] \to g[x_- + x_0]$.
- Let $f: \mathbb{R}^N \to \mathbb{R}$ be a continuous bounded function, and let $E \subset \mathbb{R}^N$, E r.d and $\bigcup_{y \in E} \{f[x_-+y]\}$ relatively compact in $C_b(\mathbb{R}^N, \|\cdot\|_{\infty})$. Then f is uniformly continuous
- (Haraux condition) Let $f: \mathbb{R}^N \to \mathbb{R}$ be a continuous bounded function, $E \subset \mathbb{R}^N$, E r.d and $\bigcup_{y \in E} \{f[x_- + y]\}$ relatively compact in $C_b(\mathbb{R}^N, \|\cdot\|_{\infty})$, then f is almost periodic.
- Let $f: \mathbb{R}^N \to \mathbb{R}$ be an almost periodic function that it attains its maximum and minimum. Then for any sequence $(x_n)_{n\in\mathbb{N}}$ there is a subsequence $(x_{n_k})_{k\in\mathbb{N}}$ and $x_0 \in \mathbb{R}^N$ such that $f'[x_- + x_{n_k}] \to f[x_- + x_0]$ uniformly.
- Let $f : \mathbb{R} \to \mathbb{R}$ be an almost periodic function, f is periodic if and only if f has Bochner compact range.

2 Periodic and almost periodic functions and its relations to some sets

It is well known that any non trivial additive subgroup G of \mathbb{R}^N such that for all x>0, there exists $g\in G$ with 0< g< x (lexicographic) is dense in \mathbb{R}^N . From that result it follows immediately that $\{n+m*r\}$ is dense in \mathbb{R} with n,m integers and r irrational. Without difficulties it is easy to prove the same result in \mathbb{R}^N with n,m in \mathbb{Z}^N and r in \mathbb{R}^N , r[[i]] irrational for $i=1,\ldots,N,\ m*r$ denotes the componentwise multiplication. Interesting though is that from the above results it follows that:

- $\{\sin(n), n \in \mathbb{Z}\}\$ and $\{\cos(n), n \in \mathbb{Z}\}\$ are dense in [-1, 1].
- $\{|\sin(n)|, n \in \mathbb{Z}\}$ and $\{|\cos(n)|, n \in \mathbb{Z}\}$ are dense in [0, 1].
- $\{\sin(n), n \in G\}$ and $\{\cos(n), n \in G\}$ are dense in [-1, 1], where G is any non trivial additive subgroup of \mathbb{R} such that for all x > 0, there is $g \in G$ with 0 < g < x.

The above statements can be formulated in \mathbb{R}^N , for example: $\{\sin(n), n \in \mathbb{Z}^N\}$ is dense in [-1, 1].

Definition 1 Let G be any discreet non trivial additive group of \mathbb{R}^N . $L \subset \mathbb{R}^N$ is called a lattice —determined by G— if L = G or there exists $a \in \mathbb{R}^N$ with L = a + G.

It is easy to prove that any n-dimensional lattice is r.d.

In \mathbb{R} a lattice G has the form: $G = a + p\mathbb{Z}$, for a, p in \mathbb{R} .

Let $f, g : \mathbb{R} \to \mathbb{R}$ be two periodic, non trivial, continuous functions, then f/g is a continuous function except for a lattice $L, L = \{x \in \mathbb{R}/g(x) = 0\}$.

If f, g have measurable periods T_1, T_2 , then f/g is periodic—measurable means $T_1/T_2 \in \mathbb{Q}$ —.

If f, g have no measurable periods then f/g is almost almost periodic (a.a.p). Here, non measurable means $T_1/T_2 \notin \mathbb{Q}$ —.

Let $A_p := \{g : \mathbb{R} \to \mathbb{R}, g \text{ continuous of period } p\}.$

Theorem 1 If p in \mathbb{R} is an irrational number then \mathbb{Z} is a uniqueness set for A_p .

PROOF: $B = \{n + m * p/n, m \in \mathbb{Z}\}$ is dense in \mathbb{R} . Then f(x = n + m * p) = f(n) for all $n, m \in \mathbb{Z}$.

Theorem 2 Let $f \in A_p$, with a uniqueness set E, then $f(x_- + z) \in A_p$ for all $z \in \mathbb{R}$ with the same uniqueness set E.

As a matter of fact sometimes if $f \in A_p$, f an odd function, there is $z \in \mathbb{R}$ with $f(x_- + z)$ an even function.

Some examples are:

- $\sin(x_{-})$ and $z = \pi/2$;
- $\sum_{k=0}^{p} a_k \sin((2k+1)x)$ and $z = \pi/2, a_k \in \mathbb{R}, k = 0, \dots, p$.
- For the odd function: $\sin(x_{-}) + \sin(2x_{-}) + \sin(3x_{-}) + \sin(4x_{-})$ there is not such a z.

Some graphics illustrate this situation in Figures 1, 2 and 3.

Theorem 3 If we take in consideration in A_p only the even functions we obtain that \mathbb{N}_0 is a uniqueness set for this class of functions.

As examples we have:

- $\{\sin(n), n \in \mathbb{N}_0\}$ is dense in [-1, 1].
- $\{\cos(n), n \in \mathbb{N}_0\}$ is dense in [-1, 1].
- $\{|\sin(n)|, n \in \mathbb{N}_0\}$ is dense in [0, 1].
- $\{|\cos(n)|, n \in \mathbb{N}_0\}$ is dense in [0, 1].

Figure 1: $\sin(x) + \sin(3 * x)$.

Figure 2. $\sin(x) + \sin(3 * x) + \sin(5 * x)$.

Figure 3: $\sin(x) + \sin(2 * x) + \sin(3 * x) + \sin(4 * x)$.

In the case $p \in Q$ we get:

Theorem 4 If p in \mathbb{R} is a rational number then $\mathbb{Z}r$, r irrational, is a uniqueness set for A_p .

 \mathbb{Z} and $\mathbb{Z}r$ are lattices. We may summarizes the result as: let f be a continuous function of period p then there is a lattice L which is a uniqueness set for A_p .

This statement can be extended to the set of functions: $B_p := \{f/g | f, g \in A_p\}$. There are discontinuous functions on this set.

We introduce now the sets:

$$AP_p := \{ f : \mathbb{R} \to \mathbb{R} | f \text{ almost periodic } \}$$

and the set of a.a. functions BB_{p} ,

$$BB_p := \{ f/g | f, g \in AP_p \}.$$

Actually, those sets are vector spaces over \mathbb{R}

For instance we get: $\{tan(n), n \in \mathbb{N}_0\}$ is dense in \mathbb{R} .

In the n-dimensional case there are several definitions of the concept of periodic function, but we work with the R-periodic concept: $f: \mathbb{R}^N \to \mathbb{R}$ is an R-periodic function if there are N linearly independent vectors e_k , k = 1, ..., N such that: $f(x + e_k) = f(x)$, $\forall x \in \mathbb{R}^N$. The vectors e_k k = 1, ..., N are called periods of f.

We get that if f is R-periodic and all the e_k in the definition are irrational then $\sum_{k=1}^{N} \mathbb{Z}e_k$ is an uniqueness set for the set of functions: $A_{e_i,\dots,e_N} := \{f : \mathbb{R}^N \to \mathbb{R} \text{ is a contin-}$ with periods e_k , k = 1, ..., N} and uous R-periodic function, $B_{e_i,\dots,e_N} := \{f/g|, f,g \in A_{e_i,\dots,e_N}\};$ of course there are discontinuous functions on this

We have an inmediate generalization of Theorem 2.

Theorem 5 Let $f \in A_{e_i,...,e_N}$ with a uniqueness set E, then $f(x_- + z) \in A_{e_i,...,e_N}$ for all $z \in \mathbb{R}^N$ with the same uniqueness set E.

Theorem 6 Let $f \in A_{e_i,...,e_N}$ then there exists a lattice L such that L is a uniqueness set of $A_{e_i,...,e_N}$.

The relation between sinc and A_p , B_p , AP_p , and BB_p

Theorem 7 Let L be a numerable uniqueness lattice of a function f in A_p or AP_p , $L = \mathbb{Z}h$. Then $\sum_{k \in L} f(kh) \operatorname{sinc}(\frac{\pi}{h}(x-k))$ is convergent toward f. When $f \in A_p$ this convergence is uniform. When $f \in AP_p$ this convergence is uniform when restricted to compact sets. Over \mathbb{R}^N it holds the same result.

PROOF: A detailed proof will appear elsewhere.

In an schematic way we proceed as follows: We associate to f a function $f_c \in C_c(\mathbb{R})$ and apply the Fourier band limited theory and Wiener-Paley like theorem.

A point wise proof in one variable is: Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous periodic function of period π , let us consider the case f even.

Let $a_n(x_-) := f(n)\operatorname{sinc}(\pi(x-n)) + f(-n)\operatorname{sinc}(\pi(x+n)), n \in \mathbb{N}$, then $a_n(x_{-}) = (-1)^n 2 \frac{f(n)}{\pi} \sin(\pi x) \frac{x}{x^2 - n^2}$ from this follows the convergence over compact sets of $\sum_{n=0}^{\infty} a_n(x_-)$ toward a function g. It follows immediately that g(n) = f(n) for all $n \in \mathbb{Z}$ then f = g.

In the odd case we have: $a_n(x_-) := f(n)\operatorname{sinc}(\pi(x-n)) + f(-n)\operatorname{sinc}(\pi(x+n)), n \in \mathbb{N},$

then: $a_n(x_-) = (-1)^n 2 \frac{f(n)}{\pi} \sin(\pi x) \frac{n}{x^2 - n^2}$ from this follows the point wise convergence. In the general case of a continuous periodic function f of period π we get that: $f(x_-) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}$, $\frac{f(x) + f(-x)}{2}$ is an even periodic function and $\frac{f(x) - f(-x)}{2}$. is an odd periodic function, by using the preceding method we get the result. The choice of the period π is irrelevant, the same with respect to the choice of the lattice \mathbb{Z} .

At this moment we do not know what happens to $\sum_{k \in L = \mathbb{Z} * p} f(kp) \operatorname{sinc}(\frac{\pi}{p}(x-k))$ when f belongs to B_p or BB_p .

However, it is that a function f in BB_p has not necessarily the property that for any sequence $(x_n) \in \mathbb{R}$ there is a subsequence (x_{n_k}) such that $f(x_- + x_{n_k}) \to g$.

An easy counterexample is: $f(x_{-}) := \frac{\sin(\sqrt{2}x)}{\sin(x)}$.

We define: $x_1 = \lfloor 2\pi \rfloor$, $x_2 = \lfloor 2*2\pi \rfloor + 0.d_1, \ldots, x_n = \lfloor n*2\pi \rfloor + 0.d_1 \ldots d_{n-1}$, where $0.d_1 \dots d_{n-1}$ denotes the n-1 decimal expansion of the number $n*2\pi$.

Some graphical examples 4

Let us see the graphics in the interval $[-2\pi, 2\pi]$.

Figure 4:
$$\sum_{k=-5}^{5} \frac{\sin(k) * \sin(\pi * (x - k))}{\pi * (x - k)}.$$

Figure 5. $\sin(x)$.

Figure 6:
$$\sum_{k=-5}^{5} \frac{\sin(k) * \sin(\pi * (x-k))}{\pi * (x-k)}$$

Figure 6:
$$\sum_{k=-5}^{5} \frac{\sin(k) * \sin(\pi * (x-k))}{\pi * (x-k)}.$$
 Figure 7.
$$\sum_{k=-10}^{10} \frac{\sin(k) * \sin(\pi * (x-k))}{\pi * (x-k)}.$$

See the case of the tangent in $(-\pi/2, \pi/2)$ in Figure 10.

Figure 8: $\sum_{k=-10}^{10} \frac{\sin(k) * \sin(\pi * (x-k))}{(\pi * (x-k))}.$

Figure 9. $\sum_{k=-5}^{5} \frac{\tan(k) * \sin(\pi * (x-k))}{(\pi * (x-k))}.$

Figure 10: tan(x).

Figure 11.
$$\sum_{k=-100}^{100} \frac{\tan(k) * \sin(\pi * (x-k))}{\pi * (x-k)}.$$

References

- [A-P] Amerio, L.; Prouse, G. (1971) *Periodic Functions and Functional Equations*. Van Nostrand Reinhold Company, New York.
- [Bo] Bohr, H. (1951) Almost Periodic Functions. Chelsea Publishing Company, New York.
- [Be] Besicovitch, A.S. (1954) Almost Periodic Functions. Dover Publications Inc, New York.
- [Bl] Blot, J. (1994) "Variational methods for the almost periodic Lagrangian Oscilations", Cahiers Eco et Maths C.E.R.M.S.E.M **96**44.
- [Bo2] Bochner, S. (1992) Collected Papers of Salomon Bochner, Part2. A.M.S., Providence RI.

- [Ca] Castro, E. (1994) "Funciones periódicas, cuasi periódicas y clasificación de funciones", Revista de Matemática: Teoría y Aplicaciones 1(1): 73–86.
- [CA1] Castro, E.; Arguedas, V. (1998) "Funciones *-periódicas", VI Encuentro Centroamericano de Investigadores Matemáticos, Managua: 41-49.
- [CA2] Castro, E.; Arguedas, V. (2000) "Algunos aspectos teóricos de las funciones casiperiódicas N-dimensionales", Revista de Matemática: Teoría y Aplicaciones 7(1-2): 165–174.
- [CA3] Castro, E.; Arguedas, V. () "N-dimensional almost periodic functions II", Revista de Matemática: Teoría y Aplicaciones,
- [Co] Cooke, R. (1981) "Almost periodic functions", Amer. Math. Monthly 88(7): 515–525.
- [Cor] Corduneanu, C. (1989) Almost Periodic Functions. Chelsea Publishing Company, New York.
- [Fi] Fink, A.M. (1977) Almost Periodic Differential Equations. Lectures Notes in Mathematics 377, Springer Verlag, New York.
- [Fis] Fischer, A. (1996) "Structure of Fourier exponents of almost periodic Functions and periodicity of almost periodic functions", *Mathematica Bohemica* 3: 249–262.
- [Ha] Haraux, A. (1987) "A simple almost-periodicity criterion and applications", *Journal of Differential Equations* **66**: 51–61.
- [Mu] Muntean, I. (1990) Analiza Functionala: Capitole Speciale. Universitatea Babes-Bolyai, Cluj-Napoca.
- [Na] Natterer, F. (1996) "Algorithms in Tomography", Muenster.
- [Sch] Schanze, T. (1995) "Sinc interpolation of discrete periodic signals", *IEEE Transactions of Signal Processing* **43**(6): 1502–1503.
- [Sm] Smith, J. Digital Audio Resampling Home Page http://ccrma-www.stanford.edu/~jos/resample/