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Abstract

The properties of almost periodical functions and some new results have been
published in [CA1], [CA2] and [CA3] In this paper we show some new definitions in
order to analize some singularities. For this functions we find some uniqueness sets in
R and Rn. The paper finishes analizing the relation of this functions and the function
sinc.
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Resumen

Las propiedades de las funciones cuasiperiódicas y algunos resultados nuevos se han
presentado en [CA1], [CA2] y [CA3]. En este art́ıculo variamos un poco la definición
para incluir cierto tipo de singularidades y encontramos para estas funciones algunos
conjuntos numerables de unicidad en R y en Rn. El art́ıculo termina analizando la
relación entre estas funciones y la función sinc.
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1 Some notations and reminders

Elementary properties of some sets of almost periodic functions have been published in
[Ca], [CO], [A-P], [BO], [COR] This paper is a natural continuation of [CA1], [CA2] and
[CA3]. We keep the basic notations and results.

Let us summarize some important results:
f : RN → R is an almost periodic function if ∀ε > 0 there is a N−dimensional vector L
whose entries are positive and satisfies that ∀y in RN there is an T in the N−dimensional
box [y, y + L] (component wise) such that |f [x + T ] − f [x]| < ε for all x in RN .

Let x ∈ RN , x[[i]] denotes the i-th component of x. We write x > 0 if x[[i]] > 0,
i = 1, . . . , N .

If x, y are in RN we write:

|x − y| :=




|x[[1]] − y[[1]]|
...

|x[[N ]] − y[[N ]]|


 .

In the case of the usual functions sin, cos, exp, sinc, we write: sin : RN → R as

sin




x1
...

xN


 := sin(x1) ∗ . . . ∗ sin(xN )

and the same definition holds for the other functions. In general we extend in the multi-
plicative way any finite family of functions.

A set E ⊂ RN is called relatively dense (r.d) if there is an L ∈ RN , L > 0 such that
for all a ∈ RN , [a, a + L] ∩ E 6= ∅.

There are many examples of r.d sets, for instance:

• Z and pZ, wsich that p ∈ R and p /∈ Z, are r.d in R.

• ZN , p1Z × . . . × pNZ, pi /∈ Z, i = 1, . . . , N are r.d in RN .

• If A is an r.d set in RN and B is an r.d set in RM then A×B is an r.d set in RN+M .

• If A is an r.d set in RN and πi : RN → R is the i-th projection then πi[A] is an r.d
set in R.

• If f : RN → RN is an isometry then f [A] is an r.d set for any A r.d set in RN .

• Let G in RN a discrete non trivial additive subgroup then G is r.d. also a+G is r.d.
for all a in RN .

Cb(RN , R) denotes the set of all bounded functions from RN → R endowed with the
norm ‖ · ‖∞

f [x− + m] denotes the function x → f [x + m], m fixed.



some aspects in n-dimensional almost periodic functions iii 27

We use the following definition:
Let f : RN → R be an almost periodic function; f is said to have Bochner compact range
(BCR) if for any N−dimensional sequence (xn)n∈N there is a subsequence (xnk

)k∈N and
x0 ∈ RN such that f [x + xnk

] → f [x + x0] uniformly when k → ∞.
We proved in those papers results like:

• Let f : RN → R be a continuous function, f is almost periodic iff A = {f [x ± y],
y ∈ RN} is relatively compact in C(RN , ‖ · ‖∞).

• f is almost periodic iff for any sequence (yn)n∈N there is a subsequence (ynk
)k∈N and

a function g : RN → R such that f [x + ynk
] → g in C(RN , ‖ · ‖∞).

• Let f : RN → R be a uniformly continuous bounded function, (yn)n∈N ⊂ RN be a
sequence such that f [x +yn] → g[x ] uniformly, and let (xn)n∈N ⊂ RN be a sequence
such that xn → x0. Then f [x + yn + xn] → g[x + x0].

• Let f : RN → R be a continuous bounded function, and let E ⊂ RN , E r.d and⋃
y∈E{f [x +y]} relatively compact in Cb(RN , ‖·‖∞). Then f is uniformly continuous

.

• (Haraux condition) Let f : RN → R be a continuous bounded function, E ⊂ RN ,
E r.d and ∪y∈E{f [x + y]} relatively compact in Cb(RN , ‖ · ‖∞), then f is almost
periodic.

• Let f : RN → R be an almost periodic function that it attains its maximum and
minimum. Then for any sequence (xn)n∈N there is a subsequence (xnk

)k∈N and
x0 ∈ RN such that f ′[x + xnk

] → f [x + x0] uniformly.

• Let f : R → R be an almost periodic function, f is periodic if and only if f has
Bochner compact range.

2 Periodic and almost periodic functions and its relations
to some sets

It is well known that any non trivial additive subgroup G of RN such that for all x > 0,
there exists g ∈ G with 0 < g < x (lexicographic) is dense in RN . From that result it
follows immediately that {n + m ∗ r} is dense in R with n,m integers and r irrational.
Without difficulties it is easy to prove the same result in RN with n,m in ZN and r
in RN , r[[i]] irrational for i = 1, . . . , N , m ∗ r denotes the componentwise multiplication.
Interesting though is that from the above results it follows that:

• {sin(n), n ∈ Z} and {cos(n), n ∈ Z} are dense in [−1, 1].

• {|sin(n)| , n ∈ Z} and {|cos(n)| , n ∈ Z} are dense in [0, 1].

• {sin(n), n ∈ G} and {cos(n), n ∈ G} are dense in [−1, 1], where G is any non trivial
additive subgroup of R such that for all x > 0, there is g ∈ G with 0 < g < x.
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The above statements can be formulated in RN , for example: {sin(n), n ∈ ZN} is dense
in [−1, 1].

Definition 1 Let G be any discreet non trivial additive group of RN . L ⊂ RN is called a
lattice —determined by G— if L = G or there exists a ∈ RN with L = a + G.

It is easy to prove that any n-dimensional lattice is r.d.
In R a lattice G has the form: G = a + pZ, for a, p in R.
Let f, g : R → R be two periodic, non trivial, continuous functions, then f/g is a

continuous function except for a lattice L, L = {x ∈ R/g(x) = 0}.
If f, g have measurable periods T1, T2, then f/g is periodic−measurable means

T1/T2 ∈ Q−.
If f, g have no measurable periods then f/g is almost almost periodic (a.a.p). Here,

non measurable means T1/T2 /∈ Q−.
Let Ap := {g : R → R, g continuous of period p}.

Theorem 1 If p in R is an irrational number then Z is a uniqueness set for Ap.

Proof: B = {n + m ∗ p/n,m ∈ Z} is dense in R. Then f(x = n + m ∗ p) = f(n) for all
n,m ∈ Z.

Theorem 2 Let f ∈ Ap, with a uniqueness set E, then f(x + z) ∈ Ap for all z ∈ R with
the same uniqueness set E.

As a matter of fact sometimes if f ∈ Ap, f an odd function, there is z ∈ R with
f(x + z) an even function.

Some examples are:

• sin(x ) and z = π/2;

•
∑p

k=0 ak sin((2k + 1)x) and z = π/2, ak ∈ R, k = 0, . . . , p.

• For the odd function: sin(x ) + sin(2x ) + sin(3x ) + sin(4x ) there is not such a z.

Some graphics illustrate this situation in Figures 1, 2 and 3.

Theorem 3 If we take in consideration in Ap only the even functions we obtain that N0

is a uniqueness set for this class of functions.

As examples we have:

• {sin(n), n ∈ N0} is dense in [−1, 1].

• {cos(n), n ∈ N0} is dense in [−1, 1].

• {|sin(n)| , n ∈ N0} is dense in [0, 1].

• {|cos(n)| , n ∈ N0} is dense in [0, 1].
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Figure 1: sin(x) + sin(3 ∗ x). Figure 2. sin(x) + sin(3 ∗ x) + sin(5 ∗ x).

Figure 3: sin(x) + sin(2 ∗ x) + sin(3 ∗ x) + sin(4 ∗ x).

In the case p ∈ Q we get:

Theorem 4 If p in R is a rational number then Zr, r irrational, is a uniqueness set for
Ap.

Z and Zr are lattices. We may summarizes the result as: let f be a continuous function
of period p then there is a lattice L which is a uniqueness set for Ap.

This statement can be extended to the set of functions: Bp := {f/g|f, g ∈ Ap}. There
are discontinuous functions on this set.

We introduce now the sets:

APp := {f : R → R|f almost periodic }

and the set of a.a. functions BBp,

BBp := {f/g|f, g ∈ APp}.

Actually, those sets are vector spaces over R
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For instance we get: {tan(n), n ∈ N0} is dense in R.
In the n-dimensional case there are several definitions of the concept of periodic func-

tion, but we work with the R-periodic concept: f : RN → R is an R-periodic function if
there are N linearly independent vectors ek, k = 1, . . . , N such that: f(x + ek) = f(x),
∀x ∈ RN . The vectors ek k = 1, . . . , N are called periods of f .

We get that if f is R-periodic and all the ek in the definition are irrational then∑N
k=1 Zek is an uniqueness set for the set of functions: Aei,...,eN

:= {f : RN → R is a contin-
uous R-periodic function, with periods ek, k = 1, . . . , N} and for
Bei,...,eN

:= {f/g|, f, g ∈ Aei,...,eN
}; of course there are discontinuous functions on this

set.
We have an inmediate generalization of Theorem 2.

Theorem 5 Let f ∈ Aei,...,eN
with a uniqueness set E, then f(x + z) ∈ Aei,...,eN

for all
z ∈ RN with the same uniqueness set E.

Theorem 6 Let f ∈ Aei,...,eN
then there exists a lattice L such that L is a uniqueness set

of Aei,...,eN
.

3 The relation between sinc and Ap, Bp, APp, and BBp

Theorem 7 Let L be a numerable uniqueness lattice of a function f in Ap or APp,
L = Zh. Then

∑
k∈L f(kh)sinc(π

h (x − k)) is convergent toward f . When f ∈ Ap this
convergence is uniform. When f ∈ APp this convergence is uniform when restricted to
compact sets. Over RN it holds the same result.

Proof: A detailed proof will appear elsewhere.
In an schematic way we proceed as follows: We associate to f a function fc ∈ Cc(R) and
apply the Fourier band limited theory and Wiener-Paley like theorem.

A point wise proof in one variable is: Let f : R → R be a continuous periodic function
of period π, let us consider the case f even.

Let an(x ) := f(n)sinc(π(x − n)) + f(−n)sinc(π(x + n)), n ∈ N, then
an(x ) = (−1)n2f(n)

π sin(πx) x
x2−n2 from this follows the convergence over compact sets of∑∞

n=0 an(x ) toward a function g. It follows immediately that g(n) = f(n) for all n ∈ Z
then f = g.

In the odd case we have: an(x ) := f(n)sinc(π(x − n)) + f(−n)sinc(π(x + n)), n ∈ N,
then: an(x ) = (−1)n2f(n)

π sin(πx) n
x2−n2 from this follows the point wise convergence.

In the general case of a continuous periodic function f of period π we get that:
f(x ) = f(x)+f(−x)

2 + f(x)−f(−x)
2 , f(x)+f(−x)

2 is an even periodic function and f(x)−f(−x)
2

is an odd periodic function, by using the preceding method we get the result. The choice
of the period π is irrelevant, the same with respect to the choice of the lattice Z.

At this moment we do not know what happens to
∑

k∈L=Z∗p f(kp)sinc(π
p (x−k)) when

f belongs to Bp or BBp.
However, it is that a function f in BBp has not necessarily the property that for any

sequence (xn) ∈ R there is a subsequence (xnk
) such that f(x + xnk

) → g.
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An easy counterexample is: f(x ) := sin(
√

2x)
sin(x) .

We define: x1 = b2πc, x2 = b2 ∗ 2πc + 0.d1,. . . ,xn = bn ∗ 2πc + 0.d1 . . . dn−1, where
0.d1 . . . dn−1 denotes the n − 1 decimal expansion of the number n ∗ 2π.

4 Some graphical examples

Let us see the graphics in the interval [−2π, 2π].

Figure 4:
5∑

k=−5

sin(k) ∗ sin(π ∗ (x − k))
π ∗ (x − k)

. Figure 5. sin(x).

Figure 6:
5∑

k=−5

sin(k) ∗ sin(π ∗ (x − k))
π ∗ (x − k)

. Figure 7.
10∑

k=−10

sin(k) ∗ sin(π ∗ (x − k))
π ∗ (x − k)

.

See the case of the tangent in (−π/2, π/2) in Figure 10.
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Figure 8:
10∑

k=−10

sin(k) ∗ sin(π ∗ (x − k))
(π ∗ (x − k)

. Figure 9.
5∑

k=−5

tan(k) ∗ sin(π ∗ (x − k))
(π ∗ (x − k)

.

Figure 10: tan(x). Figure 11.
100∑

k=−100

tan(k) ∗ sin(π ∗ (x − k))
π ∗ (x − k)

.
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Revista de Matemática: Teoŕıa y Aplicaciones 1(1): 73–86.

[CA1] Castro, E.; Arguedas, V. (1998) “Funciones *–periódicas”, VI Encuentro Cen-
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