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Abstract

In this paper, we consider the problem of one-sided conditional and unconditional
interval estimation for the scale and shape parameters in a two-parameter Weibull
model. The statistical inference is based upon the pivots advocated in Bain and
Engelhardt, the likelihood ratio method and Birnbaum statistic. Simulation results
illustrating the performance of these interval estimating methods are discussed and
displayed. Empirical point estimate results obtained with the maximum likelihood,
generalized moment and generalized probability weighted moment methods are also
presented.

Keywords: Weibull distribution, rejection of a preliminary hypothesis, interval estimator,
coverage probability, average length, simulation.

Resumen

En este art́ıculo, consideramos el problema de estimación de intervalos unilat-
erales condicionales e incondicionales para los parámetros de escala y de forma en un
modelo de Weibull de dos parámetros. La inferencia estad́ıstica está basada en los
pivotes defendidos por Bain & Engelhardt, el método del cociente de verosimilitud
y el estad́ıstico de Birnbaum. Se presentan y discuten resultados de simulación que
ilustran el rendimiento de estos métodos de estimación de intervalos. También se pre-
sentan resultados de estimación puntual emṕırica obtenidos con métodos de máxima
verosimilitud, momentos generalizados y de momentos ponderados de probabilidad
generalizados.
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1 Introduction

The two-parameter Weibull probability density function is given by

f(x; θ, β) = βθ−βxβ−1 exp[−(
x

θ
)β] (1)

for x > 0, β > 0 and θ > 0. The quantities β and θ represent the shape and scale
parameters, respectively. This distribution constitutes a successful analytical model for
many phenomena in reliability engineering, infant mortality and extreme value problems.
It is a very flexible distribution with a wide variety of possible curve shapes. In water
research, for instance, the Weibull distribution is used to model the distribution of extreme
values with small magnitude.

We consider here the problem of one-sided interval estimation for the two parameters
β and θ. Conditional and unconditional type intervals are considered. The construction
of these intervals rely on Bain and Engelhardt statistics [1, 2], the likelihood ratio statis-
tic as well as Birnbaum statistic [3]. The conditional intervals are computed following
D’Agostino and Meeks [11] setup and, therefore, are only considered in the case of re-
jection of preliminary tests for hypotheses about the relevant parameters. Earlier results
on conditional interval estimations in Weibull, Exponential and Gaussian models are pre-
sented in Mahdi [7, 8, 10]. It is worth noting that the analysis of the performance of these
interval estimators is often computationally tedious as already pointed out in Mahdi[9].

Before getting to the interval estimations, we first assess different point estimates for
the scale and shape parameters. It is important to construct confidence bounds using
optimal point estimates. We recall below two alternative estimating methods to the clas-
sical maximum likelihood methods, namely, the generalized method of moments and the
generalized probability weighted moment method. The derivation of the following equa-
tions is detailed in Mahdi and Ashkar [6]. Simulation results for the comparison of the
performance of these methods are given in appendix. We organize this paper as follows. In
Section 2, following the introduction, we present two estimating methods and in Section 3
we derive unconditional confidence bounds for β and θ using Bain and Engelhard method,
likelihood ratio method and Birnbaum statistic. Conditional confidence intervals following
these three methods are derived in Section 4. In Section 5, we derive the coverage proba-
bility of the conditional confidence interval and in Section 6 we discuss simulation results
about the performance of the considered point and interval estimates. Tables illustrating
the main simulation results are displayed in appendix.

2 Point estimating methods

We recall first the generalized method of moments and then the method of generalized
probability weighted moments.

2.1 Generalized method of moments

The point estimates of the parameters β and θ, based on a random sample x1, · · · , xn that
are provided by the generalized method of moments are given by the solutions βm and θm
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for the equations
xr1

r2

xr2
r1

=
[Γ(1 + r1

βm
)]r2

[Γ(1 + r2
βm

)]r1
(2)

and

θm = [
[Γ(1 + r1

βm
)]r2

xr1
]

1
r1 . (3)

The statistics xr1 and xr2 represent sample moments, about the origin, of order r1 and r2,
respectively.

2.2 Generalized probability weighted moments method

The probability weighted moment method advocated in Hosking [5] constitutes a strong
competitor of the maximum likelihood method. Using the probability weighted moment
method, the parameters β and θ are respectively estimated by

ˆ̂
β =

ln(k2 + 1) − ln(k1 + 1)
α̂k1 − α̂k2 − ln(k2 + 1) + ln(k1 + 1)

(4)

and

ˆ̂
θ = Γ(1 +

1
ˆ̂
β

)(k1 + 1)
−1−

1
ˆ̂
β (5)

where, α̂k = n−1
∑n

i=1

(n−i
k

)
x(i)/

(n−1
k

)
for k = 0, · · · , n− 1, is the estimator of the proba-

bility weighted moment of real order (1, 0, k), see, for instance Hosking [5].

3 Unconditional confidence bounds

We derive in this section the bound of the unconditional confidence intervals for θ and β
using Bain and Engelhardt pivot, the likelihood ratio technique and Birnbaum statistic.

3.1 Bain and Engelhardt pivots

Using the statistical pivots derived in Bain and Engelhardt [1, 2], that is,

cnβ2

β̂2
∼ χ2

c(n−1) (6)

where c = 0.822, respectively, c = 1, and

√
n− 1

β̂ ln
θ̂

θ
c′

∼ tn−1 (7)
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with c′ = 1.053. The 100(1 − p)% unconditional confidence upper bounds βU for β and
θU for θ are, respectively, given by

βU = β̂

√
χ2

0.822(n−1)
(p)

0.822n
(8)

and

θU = θ̂ exp[
1.053tn−1(p)

β̂
√
n− 1

]. (9)

The quantities tn−1(p) and χ2
c(n−1)(p) denote the quantiles of order (1 − p)100% of the

Student variable with n − 1 degrees of freedom and the Chi-square distribution with
c(n−1) degrees of freedom, respectively. The above pivots involve the maximum likelihood
estimates of β and θ which are, respectively, obtained from the equations

β̃ = [(
n∑

i=1

xβ̃i ln(xi))(
n∑

i=1

xβ̃i )
−1 − 1

n

n∑

i=1

ln(xi)]−1 (10)

and

θ̂ = [n−1
n∑

i=1

x
β̂
i ]

1

β̂ . (11)

3.2 Likelihood ratio statistic

We first derive the likelihood ratio confidence bound for the shape parameter. The like-
lihood function based on the two parameter Weibull distribution and the random sample
x1, · · · , xn is given by

Lw(θ, β) = βnθ−nβ
n∏

i=1

xβ−1
i exp−[

n∑

i=1

(
xi
θ

)β ]. (12)

For a fixed value β, the maximum likelihood estimator of θ is easily obtained as

θ̃ = [
∑n

i=1 x
β
i

n
]

1
β . (13)

Thus the profile likelihood for β is given by

Lw(θ̃, β) = βn[
∑n

i=1 x
β
i

n
]−n

n∏

i=1

xβ−1
i exp[−n], (14)

and the corresponding profile likelihood ratio by

PLR(β) =
Lw(θ̃, β)

Lw(θ̂, β̂)
, (15)
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where (θ̂, β̂) denote the maximum likelihood estimate of (θ, β). The upper bound of the
(1−α)100% confidence interval for β is then given by the largest value of the solution set
of the inequation

PLR(β) > exp−[
χ2

(2p,1)

2
]. (16)

Similarly, we obtain the likelihood ratio upper confidence bound for θ as follows. For a
fixed value θ, we obtain the maximum likelihood estimator of β as the solution β̃ of the
profile likelihood gradient equation

∂ln(Lw(θ, β))
∂β

= β[
n∑

i=1

ln(
xi
θ

)[(
xi
θ

)β − 1]] − n = 0. (17)

Theorem 1 The profile likelihood gradient equation (17) admits a unique positive root β̃.

This result can be easily proven by applying the intermediate value property of continuous
functions to the function

g(β) =
n∑

i=1

ln(yβi )[yβi − 1] − n, (18)

where yi =
xi
θ

for i = 1, · · · , n, and whose derivative

g′(β) =
n∑

i=1

ln(yi)[y
β
i [ln(yβi ) + 1] − 1] (19)

is greater or equal to zero as sum of non negative quantities.
The profile likelihood ratio for θ is then given by

PLR(θ) =
Lw(θ, β̃)

Lw(θ̂, β̂)
, (20)

where (θ̂, β̂) denote the unrestricted maximum likelihood estimate of (θ, β). Consequently,
the (1−p)100% likelihood ratio confidence interval upper bound for θ is given by the largest
solution of the inequation

PLR(θ) > exp−[
χ2

(2p,1)

2
]. (21)

where χ2
(p,1) is the (1 − p)100% percentile of the chi-squared distribution with one degree

of freedom.

3.3 Birnbaum statistic

Birnbaum [3] proposed a method for testing hypotheses about the shape parameter of
a two-parameter Weibull distribution using the two extreme statistics. Based on the
ordered sample x(1) ≤ x(2) ≤ · · · ≤ x(n) from a random sample x1, · · · , xn and the
variables y(i) = (x(i)θ )β for i = 1, · · · , n, Birnbaum [3] defined the statistic Ξ = X(1)

X(n) whose
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distribution is independent of the scale parameter θ. This statistic is then used to perform
hypotheses testings about the parameter β. We propose here to use the statistic Ξ for
constructing the one-sided confidence interval for β. The distribution function of Ξ is
easily found as

Gβ(ξ) = P (Ξ ≤ ξ) = P (
Y (1)
Y (n)

≤ ξβ)

= n(n− 1)
n−2∑

j=0

(−1)n−2−j
(
n− 2
j

)
1

n− 1 − j

ξβ

(j + 1)ξβ + n− 1 − j
. (22)

We have then Gβ(ξ) = H(ξβ) where H denotes the distribution function of Y (1)
Y (n) . From

this expression, it is easy to see that Gβ(ξ) is a monotonically decreasing function of
β. Indeed, dGβ(ξ)

dβ = H ′(ξβ)(ln ξ)ξβ < 0. Therefore, the upper bound of the confidence
interval is given by the solution β of the equation

Gβ(ξ̂) = p (23)

where ξ̂ is the observed value of Ξ. For full details on constructing confidence bounds
using distribution function technique, see for instance, Casella and Berger [4] and Wardell
[12].

4 Conditional confidence interval

The bounds of the conditional intervals are derived according to the method set forth by
Meeks and D’Agostino [11]. The set up is a follows. First we test the null hypotheses H1

0 :
θ = θ0 and H2

0 : β = β0 versus the alternative hypotheses H1
a : θ > θ0 and H2

a : β > β0

, where θ0 and β0 are fixed values. Now in the case of rejection, we estimate θ and β
by confidence intervals. Thus the estimation by confidence interval is conditioned by the
outcome of a preliminary test of significance.

4.1 Bain and Engelhard statistic

To test H1
0 and H2

0 and to construct the bounds of the conditional intervals we use the
statistical pivots (6) and (7).

Using the distribution technique for constructing confidence intervals, we obtain the
required (1−p)100% conditional confidence bound for θ as the solution θC of the inequation

FC(

√
n− 1β̂ ln

θ̂

θC
c

) =
F (

√
n− 1β̂ ln

θ̂

θC
c

) − F (tn−1(α) +
√
n− 1β̂ ln(ψ)

c
)

1 − F (tn−1(α) +
√
n− 1β̂ ln(ψ)

c
)

≥ p (24)

where F is the cumulative function of a Student variable with n−1 degrees of freedom and

ψ =
θ0
θC

. Similarly, the conditional confidence bound for β is obtained from the conditional
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cumulative function of the pivot (6) given rejection of H1
0 . This conditional cumulative

function is obtained as
GC(z) =

G(z) −G(z1)
1 −G(z1))

for z ≥ z1 (25)

where G is a chi-square distribution with c(n−1) degrees of freedom and z1 =
cnβ2

0

χ2
c(n−1)(α)

.

Thus the required conditional confidence bound βC is obtained from the equation
GC( cnβ

2
C

β̂
) = 1 − p since the left side of this equation increases as β increases.

4.2 Likelihood ratio conditional confidence interval

4.2.1 Case of shape parameter

We derive in this section the conditional confidence intervals for β and θ based on the
likelihood ratio method. To this end, let consider the statistic pivot

T = −2 ln
Lw(θ̃, β)

Lw(θ̂, β̂)
. (26)

When the population shape parameter assumes the value β, we reject the null hypothesis

H1
0 versus the alternative H1

a if PLR(β) < exp−[
χ2

(2α,1)

2 ]. This inequality can be expressed
as

T > t0 = χ2
(2α,1) − 2 ln

Lw(θ̃, β)
Lw(θ̃, β0)

(27)

Thus the conditional distribution of T given rejection of H1
0 is

F cβ(t) = P (T ≤ t|T > t0) =
FT (t) − FT (t0)

1 − FT (t0)
(28)

where t = 2 ln Lw(θ̃,β)

Lw(θ̂,β̂)
≥ t0 and FT is the distribution of a chi-squared variable with 1 degree

of freedom. Note that t = −2 ln Lw(θ̃,β)

Lw(θ̂,β̂)
increases towards infinity as β increases from

β̂. Thus F cβ(t) also increases monotonically towards 1. Therefore the upper conditional
confidence bound is obtained as solution β of the inequation

F cβ(−2 ln
Lw(θ̃, β)

Lw(θ̂, β̂)
) ≤ 1 − p. (29)

Remark 1 In the case of always rejection of H0, the equation (29) gives the confidence
interval provided by the inequation (16).

Proof. In the case of always rejection of H1
0 , Lw(θ̂, β0) → 0 and therefore the FCβ → FT .

Thus the confidence interval for β is given by the solution set {β : FT (−2 ln Lw(θ̃,β)

Lw(θ̂,β̂)
) < 1−p}

which has the same solution set as the inequation Lw(θ̃,β)

Lw(θ̂,β̂)
> exp−[

χ2
(2p,1)

2 ].
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4.2.2 Case of scale parameter

The conditional confidence interval for θ is derived in similar way. The bound of the
confidence interval is given by the upper bound of the solution set of the inequation

F cθ (−2 ln
Lw(θ, β̃)
Lw(θ̂, β̂)

) ≤ 1 − p (30)

where
F cθ (t) = P (T ≤ t|T > t0) =

FT (t) − FT (t0)
1 − FT (t0)

(31)

and t > t0 = χ2
(2α,1) − 2 ln Lw(θ,β̃)

Lw(θ0,β̃)
.

5 Coverage probability of the unconditional interval

The bounds of the conditional confidence intervals are computed for the targeted 1 − p
coverage probability. However, the coverage probability of the unconditional confidence
interval in the case of rejection must be computed under the conditional probability func-
tion of the used statistics given rejection of the null hypotheses. We illustrate this in the
case where Bain and Engelhard pivots are used.

5.1 Case of shape parameter

In this case, the coverage probability of the one-sided unconditional confidence interval
for β is given by

CP = P [β ≤ βU |
cnβ2

0

β̂2
< χ2

c(n−1)(1 − α)]

= P [
cnβ2

β̂2
≤ χ2

c(n−1)(p)|
cnβ2

β̂2
<

1
Ψ
χ2
c(n−1)(1 − α)]

=
P [ cnβ

2

β̂2
≤ χ2

c(n−1)(p),
cnβ2

β̂2
< 1

Ψχ
2
c(n−1)(1 − α)]

P [ cnβ
2

β̂2
< 1

Ψχ
2
c(n−1)(1 − α)]

(32)

where Ψ = β2
o
β2 ≤ 1. Using now the fact that the variable cnβ2

β̂2
has the chi-square cumulative

function G, we deduce that

CP =
min{G(χ2

c(n−1)(p), G( 1
Ψχ

2
c(n−1)(1 − α)}

G( 1
Ψχ

2
c(n−1)(1 − α)

=
min{1 − p,G( 1

Ψχ
2
c(n−1)(1 − α)}

G( 1
Ψχ

2
c(n−1)(1 − α)

≤ 1. (33)

Note that in the case of always rejection, that is Ψ = 0 or α = 1, the quantity
G( 1

Ψχ
2
c(n−1)(1 − α)) = 1. Therefore, CP = 1 − p as it should be.
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5.2 Case of scale parameter

In this case, the coverage probability of the unconditional interval for θ is given by

CP = P [θ ≤ θU |
√
n− 1

β̂ ln
θ̂

θ0
c′

> tn−1(α)]

= P [
√
n− 1

β̂ ln
θ̂

θ
c′

≥ −tn−1(p)|
√
n− 1

β̂ ln
θ̂

θ
c′

> tn−1(α) +
β̂
√
n− 1 lnψ
c′

]

=
P [

√
n− 1

β̂ ln
θ̂

θ
c′ > max{−tn−1(p), tn−1(α) + β̂

√
n−1 lnψ
c′ }]

P [
√
n− 1

β̂ ln
θ̂

θ
c′ > tn−1(α) + β̂

√
n−1 lnψ
c′ ]

(34)

Using the cumulative function F of the Student variable
√
n− 1

β̂ ln
θ̂

θ
c′ , we get

CP =
min{1 − p, 1 − F (tn−1(α) + β̂

√
n−1 lnψ
c′ )}

1 − F (tn−1(α) + β̂
√
n−1 lnψ
c′ )

(35)

As partial check of the above equation, we consider again the case of always rejection
that is ψ = 0 or α = 1. In such situation, we also get CP = 1 − p as it should be since
tn−1(α) + β̂

√
n−1 lnψ
c′ → −∞.

6 Discussion

To compare the performance of the different point and interval estimates of β and θ a
simulation has been performed. Several values for n, α, ψ,Ψ, β are considered. The taken
nominal value is p = 0.05 and θ = 1 is used. The point estimates of β and θ obtained
by the maximum likelihood method have been found to be more accurate than the ones
obtained with the other estimating methods, see, Tables 1 and 2 for illustration. Root
mean square errors are used to quantify the accuracy. On the other hand, another pilot
simulation study has been performed for comparing the confidence intervals presented
in this paper. The interval based on Birnbaum statistics has poorly performed; this
may be due, to the non sufficiency of the statistic Ξ for β. On the other hand, the
likelihood ratio method provided high length intervals along with overestimated coverage
probabilities. Therefore only Bain and Engelhard conditional and unconditional intervals
are further considered. The accuracy of the distributional fit of Bain and Engelhardt pivots
depends upon the accuracy of the point estimates of θ and β. These maximum likelihood
estimates were sucessfully obtained using the Newton-Raphson procedure initiated with
the starting point advocated in Zanakis [14]. The study showed that better accuracy is
found for c = 0.822 and for large sample sizes and non large β values, see, for instance,
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Table 3 for illustration. Similar results are obtained for the scale parameter. The results
agree with the expressions for the variances of the estimators β̂ and θ̂ obtained from the

computed inverse of Fisher information matrix I whose entries are I11 = nE[−∂
2 ln f
∂β2 ] =

nβθ2, I12 = I21 = nE[−∂
2 ln f
∂β∂θ

] = nK1θ and I22 = nE[−∂
2 ln f
∂θ2 ] =

n(1 +K2)
β2

where

K1 = .42784 andK2 = .823683 are values of appropriate improper integrals evaluated with
Mathematica [13]. Conditional and unconditional intervals based on Bain and Engelhardt
pivots are compared to each other in terms of coverage probability and average length
through simulations. These intervals are identical when the population scale and shape
parameters are far enough from θ0 and β0, respectively. For the shape parameter, which
the main parameter, the study has showed that the conditional interval has a sighly larger
length than the unconditional one when Ψ increases from Ψ = 0.25 towards Ψ = 1.
However, it has a significantly better coverage probability especyially when Ψ ≥ 0.75. We
recommend then the use of the conditional interval. In the case of scale parameter, we
noticed that as θ get close to θ0, the unconditional interval become slightly wider than
the conditional one especially for large pre-test significance levels α. Furthermore, both
intervals maintain a coverage probabality close to the nominal level. Threfore, we also
recommend to use the conditional one if ψ or its estimate is close 1, say larger than, .90
as illustrated in Table 5.

A Tables

n ML GM GPWM

25 0.9367 1.1054 1.0211
50 0.6051 0.7650 0.7580
100 0.4082 0.5600 0.5485
200 0.2820 0.4267 0.3914

Table 1. RMSE for β obtained with the maximum likelihood, generalized moment and
generalized probability weighted moment methods in the case of β = 0.5(0.5)10 and

n = 25, 50, 100 and 200.

n ML GM GPWM

25 0.0991 0.0990 0.1098
50 0.0675 0.0720 0.0744
100 0.0469 0.0537 0.0515
200 0.0328 0.0409 0.0360

Table 2. RMSE for θ obtained with the maximum likelihood, generalized moment and
generalized probability weighted moment methods in the case of θ = 1 and

n = 25, 50, 100 and 200.
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n 10 15 30-120 10-120

β = 0.5 .1942 .1362 .0581 .1011
β = 1.0 .3882 3.2725 .1162 .2021
β = 1.5 .5830 .4093 .1743 .3034
β = 2.0 .7774 .5451 .2325 .4043
β = 2.5 .9710 .6817 .2906 .5051
β = 3.0 1.1652 .8169 .3488 .6062

Table 3. RMSE for estimates of β in the cases of β = 0.5(0.5)3 and n = 10, 15, 30 − 120
and 10 − 120.

Ψ CPCI CPUI LR
0.05 0.9470 0.9470 1.0000
0.15 0.9470 0.9470 1.0000
0.25 0.9470 0.9470 0.9996
0.35 0.9470 0.9470 0.9954
0.45 0.9462 0.9462 0.9854
0.55 0.9439 0.9423 0.9743
0.65 0.9407 0.9316 0.9682
0.75 0.9359 0.9085 0.9673
0.85 0.9229 0.8586 0.9696
0.95 0.8997 0.7617 0.9731
1.05 0.8128 0.6015 0.9767

Table 4. Empirical coverage probabilities and length ratios of the conditional and
unconditional intervals for β obtained with Bain and Engelhardt method. Ψ = θ0

θ , CPI,
CPUI represent the coverage probabilities of the conditional and unconditional intervals,
respectively. The column LR gives the length ratio of the unconditional interval to the
conditional interval. Values are averaged over α and n = 10, 15, 30, 60, 120.

ψ ≤ .90 .92 .94 .96 .97 1.03 1.04 1.06 1.08 1.10 ≥ 1.12
LR ' 1 1.022 1.045 1.065 1.142 1.253 1.218 1.12581 1.011 1.009 ' 1

Table 5. Empirical length ratios of a 90% conditional confidence interval to the

corresponding unconditional confidence interval expressed as function of ψ =
θ0
θ

. Values
are averaged over the sample sizes n = 10, 15, 30, 60, 120 and α levels.

References

[1] Bain, L.J.; Engelhardt, M. (1981) “Simple approximate distributional results for con-
fidence and tolerance limits for the Weibull distribution based on maximum likelihood
estimators”, Technometrics 23(1): 15–20.



72 S. Mahdi Rev.Mate.Teor.Aplic. (2005) 12(1 & 2)

[2] Bain, L.J.; Engelhardt, M. (1991) Statistical Analysis of Reliability and Life-Testing
Models. Deker, New York.

[3] Birnbaum, Z.W. (1974) “Computers and unconventional test-statistics”, Reliability
and Biometry, Statistical Analysis of Lifelength, SIAM.

[4] Casella, G.; Berger, R.L. (2002) Statistical Inference, second Edition. Duxbury.

[5] Hosking, J.R.M. (1986) “The theory of probability weighted moments”, Research
Report RC12210, IBM Thomas J. Watson Research Center, New York.

[6] Mahdi, S.; Ashkar, F. (2004) “Exploring generalized probability weighted moments,
generalized moments and maximum likelihood estimating methods in two-parameter
Weibull model”, it Journal of Hydrology 285: 62–75.

[7] Mahdi, S. (2003) “Two-sample conditional inference in a Weibul model”, Car. Jour.
Math. Comp. Sci. 11: 1–12.

[8] Mahdi, S. (2000) “Estimation in exponential models”, Matematicki Vesnik 52: 27–45.

[9] Mahdi, S. (1999) “Monte Carlo studies on the accuracy of an interval estimator after
a preliminary test of significance procedure”, Bulletin of the International Statistical
Institute, 52nd session, Book 2, Helsinki: 253–254.

[10] Mahdi, S.; Gupta, V.P. (1993) “Conditionally specified confidence interval for the
variance of a normal population”, Bull. Soc. Math. Belg. B 45(3): 245–256.

[11] Meeks, S.L.; D’Agostino, R.B. (1983) “A note on the use of confidence limits following
rejection of a null hypothesis”, The American Statistician 37: 134–136.

[12] Wardell, D.G. (1997) “Small sample interval estimation of Bernoulli and Poisson
parameters”, The American Statistician 51(4): 321–325.

[13] Wolfram, S. (1991) Mathematica: A System for Doing Mathematics by Computer,
(2nd ed.). Addison-Wesley Publishing Company, USA.

[14] Zanakis, S.H. (1979) “Extended pattern search with transformation for the three-
parameter WEI distribution”, Management Science 25: 1149–1161.


