REVISTA DE MATEMATICA: TEORIA Y APLICACIONES201623(2) : 421444
CIMPA—UCR  ISSN 1409-2433 (RINT), 2215-3373 (QLINE)

A HYBRID ALGORITHM FOR THE ROBUST
GRAPH COLORING PROBLEM

UN ALGORITMO HIBRIDO PARA EL PROBLEMA
DE COLORACION ROBUSTA DE GRAFICAS

ROMAN ANSELMO MORA-GUTIERREZ*
JAVIER RAMIREZ-RODRIGUEZ ERIC A. RINCON-GARCIAY
ANTONIN PONSICH ANA LILIA LAUREANO-CRUCES!

Received: 30 Sep 2014; Revised: 12 Apr 2016;
Accepted: 28 Apr 2016

*Universidad Auténoma Metropolitana-Azcapotzalco, Departamentoisten$as, Av. San
Pablo 180, Colonia Reynosa Tamaulipas, Ciudad de México, C.P. 022&Xico. E-Mail:
ing.romanmora@gmail.cam

TMisma direccién qu&ame address aR. A. Mora-Gutiérrrez.

E-Mail: jararo@correo.azc.uam.mx

fMisma direccion qu&ame address aR. A. Mora-Gutiérrrez.
E-Mail: rigaeral@correo.azc.uam.mx

$Misma direccion qu&ame address aR. A. Mora-Gutiérrrez.
E-Mail: aspo@correo.azc.uam.mx

TMisma direccién qu&ame address aR. A. Mora-Gutiérrrez.
E-Mail: lclc@azc.uam.mx

421


mailto: ing.romanmora@gmail.com
mailto: jararo@correo.azc.uam.mx
mailto: rigaeral@correo.azc.uam.mx
mailto: aspo@correo.azc.uam.mx
mailto: clc@azc.uam.mx

422 R.A. MORA - J. RAMIREZ - E. RINCON - A. PONSICH- A. LAUREANO

Abstract

A hybrid algorithm which combines mathematical programgprtiech-
niques (Kruskal's algorithm and the strategy of maintagnarc consis-
tency to solve constraint satisfaction problem “CSP”) aadrfstic meth-
ods (musical composition method and DSATUR) to resolve timist
graph coloring problem (RGCP) is proposed in this paper. eirgental
result shows that this algorithm is better than the otheorétlyms pre-
sented on the literature.

Keywords: metaheuristics; combinatorial optimization; integer programming.

Resumen

En este articulo se propone un algoritmo hibrido que comtgicai-
cas de programacién matematica (algoritmo de Kruskal yttategia de
mantener consistencia de arcos para resolver el problersatidéaccion
de restricciones) y métodos heuristicos (método de comipasnusical
y DSATUR) para resolver el problema de coloracion robustaymdi-
cas (RGCP). Resultados experimentales muestran que gstaral da
mejores resultados que otros presentados en la literatura.

Palabras clave:metaheuristicas; optimizacion combinatoria; programacion en-
tera.

Mathematics Subject Classification:05C15.

1 Introduction

Graph theory has provided many models and efficient solution techniquas f
variety of problems that have arisen in different contexts. One of staifigms
is to color the vertices of a graphl [6,/30, 85| 36]. The graph colorinblpm is,
given a graphG = (V, E) with sets of vertices and edges denoted by V and E,
respectively andl/ (G)| = n, to minimize the number of colors used for coloring
the vertices of the graph such that no two adjacent vertices have the slime ¢
The problems that have been modeled as graph coloring problems axe varie
and range from those who only have historical or educational interesiph-
cations in diverse areas, such as the eight queens problem, schqmigfoliem
[2], course scheduling [6, 35, 36], cluster analysis [31], frequeassignment
problem [30], map colorind [31], approach for image segmentation f3ign
and operation of flexible manufacturing systefis [7], etc.
Certain graph coloring problems can have requirements in the colorations,
specifically, the possibility of converting the criterion to minimize the number of
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colors used in a restriction and seek new approaches of optimization that allo
us to compare the various colorations obtained with a given number of colors

It is of interest that a coloration is stable in the sense that when adding or
changing edges in the graph, the coloring will continue to be valid. These co
siderations show that the problem of coloration is a restrictive model fotyihés
of problems. Such comparations can be made if we associate a positive weigh
to each no edge and use the Robust Graph Coloring Problem (RGCRuicich
in [31].

Applications in examination timetabling problem, cluster analysis, uncer-
tain resource constraint assignment problems in supply chain managemdent a
machine scheduling have been presented in[[31, 33, 21, 19]. Mathehfiatica
mulations of the RGCP as a binary linear programming problem and quadratic
assignment among others are proposed_in [31].

Genetic algorithms are proposed in|[31] 20], simulated annealing and tabu
search algorithms are described (inl[12 20, 11], a scatteer searoidpre is
presented in[17], other encoding schemes, neighborhood struatwlesearch
algorithms are proposed in_[34], a local search procedure is prapngé1],
an ant algorithm is proposed in [18] and finally a branch-and-price igthgoiis
presented inJ1].

In this paper we investigate the use of branch and cut to explore eéctiv
suitable solution subspaces controlled by a simple external branching-frame
work. The procedure is musical composition method where the neighlashoo
are obtained through the introduction in the integer programming of constraints
called local branching cuts.

The new solution strategy is approximate, though is designed to improve the
heuristic, producing improved solutions.

The paper is organized as follows. Next section describes the rotaggt g
coloring problem. In Section 3, the proposed algorithms are describegedn
tion 4 the experimental methodology is described and a computational analysis
and comparisons on some instances of the RGCP is presented. FinallytjiamSec
5 some conclusions are given.

2 The robust graph coloring problem
LetG = (V, E) be agraph, itis said that G ks- colorable if each of its vertices
can be assigned one of thkecolors in such a way that adjacent vertices do not

have the same color. The minimum valueko$uch that G i — colorable is
the chromatic number of G denoted RYG).
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Given complementary graplis = (V, E), G = (V, E) and a penalty func-
tion P : E — R, the rigidity of ak — coloring of G, denoted byR(C) is the
sum of the penalties of the edges@that join vertices with the same colaig.

R(C) = Z Dij- 1)

{i,j}eE, C(H)=C(j)

Robust graph coloring problem. Find thek — coloring of minimum rigidity,
i.e.,

Min R(C)

st S me=1 Vie{l,---,n}
T +a <1 V{i,jteE, Yee{l,--- k} 2
Tie+Tje—1<y;; V{i,jteE, Vce{l, -k}
Yo wie > 1 Vee{l, -, k},

where the decision variables are:

0 if C(i) #c

The following auxiliary variables are considered

1 ifdee{l,--- k}suchthatx;. = ;. .. —
yij:{ c€ } Yie =4 v{i,j} € E.

0 otherwise

The first set of constraints ensures that to each vertex is assignedla sin
color. The second set of constraints ensures that the coloring is valethird
guarantee that if two vertices not connected by an edge have the same colo
then the penalty is added to the objective function and finally the last set of
constraints, introduced in this paper, ensures that all colors are used.

3 Algorithms

Our hybrid, denoted as MP-MMC, combines mathematical programming tech-
niques (Kruskal’s algorithm and the strategy of the maintaining arc consjsten
for solving constraint satisfaction problems “CSP”) with heuristic methods (mu
sical composition and DSATUR). The general structure of our hybrithasva
in Algorithm[1l. Then, a brief description of methods used by this is given.

The Kruskal's algorithm is a greedy algorithm, which was proposed in [15]
used to find the minimum spanning tree for a connected weighted graph.

Rev.Mate.Teor.ApliqISSN print: 1409-2433; online: 2215-3373) Vol. 23(2): 4244, July 2016



A HYBRID ALGORITHM FOR THE ROBUST GRAPH COLORING PROBLEM 425

The strategy of maintaining arc consistency, denoted MAC, is an intelligent
search algorithm, which use the information on the value that assume variables
for generating backtracking on possible range of the other varialdespdre
details of the MAC we refer the reader o [4] 16} 32, 22].

The musical composition method, denoted MMC, which was presented in
[25], is a metaheuristic, which mimic the social-creativity system involved in
musical composition process. The MMC use a multiagent model, into social
network. This social network is composed of a selNaf vertices or agents
(which are called composers), and a gebf edges or links (which are rela-
tionships among composers). In this model, each composer has for kigewled
(a set of solutions, each solution is called “tune” and it is represented by a
dimensional vector, which is composed by the values of decision variaids)
set of mechanisms and policies for interaction, based on this, each caropose
communicate and exchange information with other composers. For more details
of the MMC we refer the reader to [25,126, 27] 28|, 29]. The DSATUR®&igmM,
which was presented][5], is a sequential coloring algorithm with a dynamically
established order of the vertices.

Algorithm 1: General algorithm, MP-MMC

Input: Instance characteristics to solve, agef parameters

Output: The best found solution

1 begin

2 Determine both a séf of edges contained i@ and cost of” based on algorithiil 2
3 Create a society wittV. composers, with rules of interaction among composers.
4 for each composer into societp

5 P, . . + asetofNs solutions create based on algorithin 3.

6

7

8

9

for each solution inta?; . . do
\ evaluate; ; . < evaluation of the solutiof®; ..., based on algorithil 6.

end

end
10 while termination criterion is not medo
11 Update the artificial society of composers.
12 Exchange information between agents.
13 for each composer into societp
14 Generate and evaluate a new solutiane,,.,, accordance with algorithf 7
15 UpdateP; . . (see AlgorithniID)
16 end
17 Build the solution set.
18 end
19 end
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Algorithm[1 is made up by six phases, which are (1) initializing the opti-
mization process (from input to line 9) (2) interaction among agents into society
(lines 11 and 12); (3) each composer generates a new solution (line+Ldp-
date theP; , . of each composer (line 15); (5) building the set of solutions (line
17) and (6) repeating while the stopping criterion is not fulfilled (lines 10 jo 19
The basic structure of the MP-MMC is similar to the general structure of the
MMC. In the following sections, the steps of our hybrid are described tailde

3.1 Initializing the optimization process

Initially, in this phase, characteristics of the instance to be solved and theeafalu
the set working parameteré(p-mmc) are introduced as input for our hybrid. The
setfyp-mmc is the same as the s implied in MMC, which is composed
by the maximum number of arrangememiafzarrangement, factor of genius both
innovation {fg) and changedfg) factor of exchange among ageritd4), number
of composersNc) and number of chords that integrate the artwadtk)

Algorithm 2: Determine a set’ of edges
Input: graph of the instance to solve
Output: T andcosty
1 begin
M represents a large positive number
|V | number of vertices of the graph to solve.
G complementary graph with penalty.
E set of edges of the!
fori=1:|V|—1do
forj=i¢+1:|V|do
if {i,5} ¢ E then
Add {i, j} to G with a costM
Add {j,4} to G with a costM
end

end
end
Use Kruskal's algorithm to find a minimum spanning téen G
Delete of T’ whatever edge with cost/
16 costr is the sum of the costs of edgés
17 end

© 0O N O 0o b~ W N

B
= O

e
o b w N

After, in step 2, a set’ of edges of the complementary graph is determined
based on the algorithii 2.
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Subsequently, in the MP-MMC algorithm is used the algorithm 3 for gener-
ate an initial set of solutionZ; , , ) for thei-th composer. Algorithml3 is based
on DSATUR algorithm, however algorithid 3 is a random method that uses a
peak of the number of vertices colored leyh color.

Algorithm 3: Generate a set of solutions for each composer
Input: N.,N, adjacency matrixA), penalty matrix C)

Output: P
1 begin
2 |V'| <— number of vertices of the graph to solve
3 K < number of colors used in the instance to solve
s | pe |
5 auxiliary is a zeros matrix of K x |V])
6 fori=1: Ncdo
7 for j=1: Nsdo
8 | P, ;. + solution looks for the algorithiil 5
9 end
10 end

11 end

Algorithm 4: Determineprobability matrix

Input: |V, adjacency matrix4), penalty matrix ()
Output: P

begin

2 Built a opportunity cost matrix@C') considered”
ag — E\V\ ZW\ Ay

3 as %EM E‘V‘ OC;;

4 fori=1:|V]|do

[N

V] L Ai
5 probability ;1 <+ ——— Z
|V| oC, .
6 probability ;2 < @
a2
7 end
8 end
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Algorithm 5: Randomized Dsatur algorithm with peak

o0~ WN P

~

10
11
12
13
14
15
16
17
18
19
20
21
22

23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Input: |V, K, A, p
Output: new_solution
begin

end

new_solution is a zeros vectofl x |V|)

Dselection — probability, 1 obtained with algorithm 4

fork=1: K do

if there is a vertex not colouretien

v® is a not yet coloured vertex it1, which is randomly selected with base in

Pselection
new_solutiony ya < k

Pselection,a = 0

_ VI )
az = lel Pselection;
ar =1

auziliaryy , < Aya .
while (a2 # 0) A (a1 < p) do
APselection =
fori=1:|V|do
if thel — th vertex has not been coloured aadziliaryy ; = 0 then
APselection; = pTObabilityl,l
else
‘ APselection; = 0
end
end
aa2 = Zapselsction
f aaz # 0then

apsfil,(icf,i()nl
APselection; = T aaz vl= 1,..., ‘V|

vs is a vertex inV, which is randomly selected with basedpgeiection
new_solutiony 4s < k

Pselection,s = 0

a2 = ) Pselection

ar =a; +1

auziliaryy » < auziliaryg  + Ays «

else
‘ ai =p
end

end

else

v is a vertex inV, which is arbitrarily selected
new_solutiony ya <k

end
end
foril=1:|V|do
if new_solution; ; = 0 then
| mew_solutiony ; = 1+ round(rand = (K — 1))
end

end
evaluation <+ Evaluatenew_solution based on algorithin 6
new_solution = new_solution U evaluation
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Algorithm 6: Evaluatej — th solution

Input: T, new_solution, C, A, K
Output: evaluation
Determine the number of constraints not &) by solution
if C(C) =0then
| R(C) < is the value of the objective function in the solution
else
‘ R(C) — w_”
end
a1 is the number of edges in the solution conterin

=[]

o= |1
10 fork=1:Kdo

o N o N WwN R

©

11 a4 is number of vertices of the — ¢th color
2 2

12 Dify, = % % ((a4—Ka2) 1 (a4;(a3) )

13 end

14 a5 = Z‘lfjl Dify
15 T(C)=(T| —a1) + a5 + R(C) « C(C) + 1)
16 evaluation = [C(C) R(C) T(C)]

3.2 Interacting among agents

In this phase, composers exchange information according to a interaotion p
specific. The interaction policy, used in this work, is “the compasearns from
the composek, if there is a link between them and if the artwork of compdser
has more desirable characteristics than the artwork of compbsEhis policy
was proposed in [25, 26, P7].

This phase is made up by two sub phases, which argdating the links
between composers which each composer can choose to modify his relation
with other composer into society andi@jormation exchange proceduyra this
sub phase, each composer interacts with other composers into society so the
i — th composer takes and gives information with other composers into society,
after, thei-th composer builds his matrix of the acquired knowledf&(; . .).
Routines employed by this phase were presented in [25, 26, 27].

3.3 Generating a new solution

In this phase, each composer will create a new tune utilizing his knowledge.
This phase is divided into two sub phases:bijlding the knowledge matrix
(K M). Each composer constructs Ms)M; through of combining his; . .
with 15C; . .. after, thei — th composer assesses the fitness of each solution into
K M;. And 2)creating a new solutiorin this sub phase, each composer generate
a new solution based on both Hi&M; and the algorithr7.

The strategy of MMC for generating a new solution is used, in the step from
8 to 12 of the algorithml6, to create a input for the strategy of maintaining arc
consistency, which is contained in steps from 16 to 41.
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Algorithm 7. Creating a new solution

Input: KM;,ifg, cfg, A, p
Output: newsoiution

1 begin
2 for each composer in societip
3 FKM =10
4 F KM, . is the best solution content ¥ M;
5 FK M, . is a solution randomly take df M; with base infitness(K M;)
6 FK M, . should be different td" K M> .
7 FKMs,. is a solution arbitrarily take of< M;
8 if rand; < (1 —ifg) then
9 \ base is generated trough algoritHoh 8
10 else
11 \ base is generated trough algoritHh 5, bt ciecrion, assignerobability; »
12 end
13 o <—zeros matrix £ x |V)
14 NeWsolution =
15 B <« zeros vector] x K)
16 forl=1:|V]|do
17 a1 < basey;
18 if (atgy,1 = 0) A\ (B1,q; < p)then
19 NeWsolution 1,1 a1
20 Qgq,: = Qagq,: +Aa1,:
21 B1,a17 = Bi,a; +1
22 end
23 end
24 a1 = max{maxg—1,2,... K;vi(ak)}
25 az{[%”vz:1,...,\V|yk=1,...,K
1

26 fork=1:Kdo
27 while 8; ,, < pdo
28 foril=1:|V|do

- . _ 1 Zf NeWsolution 1,1 75 0
2 Uzsnl’l N { 0 Zf Ne€Wsolution 1,1 = 0
30 end
a1 W — {’V‘lk,l“';”itl,l-‘}
a2 it IV w1, < V] then
33 ~ is the index of a cell with value equal zero into veatqy .

NeWgolution 1,y < k
34 Qg = Q. +A%;
35 Bixk=P1r+1
36 a:{[&a’—ﬂ}\ﬂ:1,...,|\/|yk:1,...,1(
37 else
38 | Bip=pBe+1
39 end
40 end
41 end
42 Call algorithnT® omewsoution
43 end
44 end
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Algorithm 8: Creating a base
Input: KM;, cfg,K,|V|
Output: base
begin

1

2 fori=1:|V|do

3 MHl,l = maX(KMi,*,l)

4 MHQJ = min(KMZ-,*J)

5 end

6 base = ()

7 fori=1:|V|do

8 if randy < (1 —cfg) then
9 a1 = rand

10 if a; < £ then

11 ‘ base; = FK M
12 else

13 if ap < 2 then

14 ‘ base; = FKM»
15 else

16 ‘ base; = FKMs
17 end

18 end

19 else

20 as = rand

21 if a; < 1 then

22 if ap < 5 then

23 ‘ base; = MHy
24 else

25 ‘ base; = M Ho
26 end

27 else

28 ‘ base; = 1 + round(rand * (K — 1))
29 end

30 end

31 end

32 end
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Algorithm 9:  Making feasible tovewsopution
Input: newsolution:‘v" K
Output: newsoution

1 begin

2 a is a zero vectorl( x K)

3 fori=1:|V|do

4 if newsorution 1, = 0 then

5 ‘ NeWsolution 1,1 = round (1 + rand (K — 1))
6 end

7 A1 newsorution 1,1 = ML neworytion 14 T 1

8 end

9 fork=1:Kdo

10 if a1, = 0then

1 as < round(l 4+ rand(|V]+ 1))

12 a3z < NeWsolution 1,a2 N€Wsolution 1,as < k
13 a1 = a1k +1

14 a1,q5 = A1q3 — 11

15 end

16 end

17 end

3.4 Updating the P, , ,

In this phase, each composer makes a decision on either replacing oenot th
worst tune {uneyorst) in his score matrixP; , . With newsoution. The deci-

sion is based on the value of the objective function, so if the value of olxgecti
function of thenewsquiion 1S better than the value of objective function of the
tuneyporst, thennewsoption replaces theune,,ors: i P; . «. Algorithm[10 illus-
trates the procedure used for this purpose.

3.5 Building the set of solutions

In this phase, the MP-MMC selects the melody contained in artwork of every
composer that achieves the best objective function value. The condisg
routine is shown in Algorithrh 1.
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Algorithm 10: Updating thep, , .
INput: newsorution Pixx
Output: P, , .

1 begin
2 tuneyorst IS the worst solution intd; , . depend on objective
function

3 R(C)worst 1s Value of objective function of theine,,orst

4 C(C)worst is the number of constrained no mettye st
5 T (C)worst is the number edge contend bathe,,,.s: andT
6 R(C)new is value of objective function of theewsoution

7 C(C)pew is the number of constrained no metbywoution
8 T'(C)newt is the number edge contend botbw,ytion, andT’
9 if C(C)new < C(C)worst then

10 if R(C)new < R(C)worst then

11 if R(C)new < R(C)worst then

12 | Replacing of th@uneuyorst for newsopution iN Pi
13 else

14 if T(C)new > T(C)worst then

15 | Replacing of th@uneqorst fOr newsorution IN P
16 end

17 end

18 end

19 end
20 end

Algorithm 11: Building the set of solutions
Input: P, . ,,Nc
Output: Solutions
1 begin
2 Solutions <+ () fori:1: Ncdo
3 Solution; < is the element, withiPi, x, x with the best value
based orC'(C), R(C) andT(C)

4 end
5 end
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4 Experimental methodology and test problem

This section presents the computational experiments and associated rbsults o
tained by theMP-MMC algorithm on a set of instances of the robust graph
colouring problem (RGCP), the general structure of the RGCP is shown in
Equation[(2).

4.1 Test problems

The characteristics of the instances used in this work are shown in thé table 1
wheren is the number of vertices in the graph ahds the number of colors.
This instances were propose In [31] and these have been used ialseueEs

e.g: [31)/33/17].

Table 1: Instances of the RGCP.

Gnos | n k Gnos | n k
al(20)[20 7 al(60)| 60 20
al20)| 20 8  al(60)| 60 21
al(30)| 30 10  al(70)| 70 24
al(30)| 30 11  al(70)| 70 25
al(40) | 40 14  al(80)| 80 27
al(40) | 40 15  al(80)| 80 28
al(50) | 50 17  al(@0)| 90 30
al(50) | 60 18  al(@0)| 90 31

4.2 Design of the experimental test

The experiment was designed in order to analyze the performance ofRhe M
MMC on sixteen instances of the RCPs.

Taking into account the stochastic nature of the MP-MMC algorithm, 20
independent replications were performed for each instance. The timandin
value of objective function were registered for each replication. Tbheedch
instance and both objective functions the maximum, minimum, variance and
standard deviation values were calculated.

The numerical result obtained by our hybrid was compared versusshiésre
get by following algorithms:

e Tabu SearchTsS) [9].
e Greedy randomized adaptive search proced@iRASP) [8].
e Scatter Searct5g) [10,/24].
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A HYBRID ALGORITHM FOR THE ROBUST GRAPH COLORING PROBLEM 435

The information of these algorithms on the selected test set was taken from
[12,17].

With the aim of comparing the results obtained by the above mentioned
metaheuristics on each instance, the results were normalized through the fol-
lowing equation:

e, _ ST e
f(mnorma 1ze ) = f(l.WOrSt inﬁ) . f($*) (3)

where: f(z*) is the value of the objective function at the global optimal point,
f(zmethod—ay g the average value of the objective function found by metaheuris-
tic o, f(zWOrstiNg) is the worst average of the objective function found by
metaheuristics on test cae andf(z"0'Malizeéd o) is the normalized value of
the objective function found by metaheuristic _

The value of f(z"0rmalized-a) ranges from 0 to 1. Wxnormal!zeda
is close to 0, the value of (zMEt0Ga) is near tof (2*). If f(zNOTMAalized )
is close to 1, the value of(zM€tN0%a) is far from f(2*).

Furthermore, a non-parametric Wilcoxon rank sum test was applied to the
results obtained byIMC and the other tested heuristic algorithms. The null
hypothesis is that data from two solution sets are independent: if the value re
turned by the testid = 1, the null hypothesis is rejected with a 5% significance
level, while h = 0 indicates a failure to reject the null hypothesis with a 5%
significance level. Parameteps(standing for the symmetry and mean of the
distribution) anch (which is the hypothesis test result) were computed from this
statistical test.

4.3 Parameter setting for theMP-MMC hybrid

In the first tuning, an arbitrary seét of parameters was fixed, later parame-
tersmax arrangement, NC @andNs were adjusted with the brute-force approach
[3]l. The Nc is expressed as a percentagef the |V| (see equationl4) . The
MAZ grrangement WETE determined in function of tiés through equationl5. The
setd obtained in this phase, was used as input for tuning offthehe cfg and
theifcla parameters with a technique semi-factorial experimental design.

Ne= x|V (4)
max = Nsx*k. (5)
arrangement
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Table 2: Parameter settings of MP-MMC.

Parameter value
K 1000
A 0.3
Ns 5!
ifg 0.2
cfg 0.1
fcla 0.1

In the semi-factorial experimental design, combinations generated by val-
uesifg : {0.1,0.2,0.3,0.4,0.5}, c¢fg : {0.0,0.1,0.2,0.3,0.4,0.5} andcfla :
{0.0,0.1,0.2,0.3,0.4,0.5} were tested, so 180 experiment were tried out. Five
repetitions were made for each experiment. Also in each repetition, the value o
objective function (z)) was registered. Then, the mean squared eM3H)
was calculated, through equatian 6, for each repetition:

: _
(f(z) = f(x))?

MSE; = e -7 6

; 3 (6)

The minimum value of théASEwas 0.035, which was get wittfg = 0.2,
cfg = 0.1 andcfla = 0.1. In contrast, the maximum value MSEwas 32.96,
which was found withi fg = 0.3, cfg = 0.5 andcfla = 0.2. In Table(2, the

parameter setting is shown.

4.4 Experimental results and discussion

The MP-MMC was implemented in Matlab R2010a on a MacBookAir process-
ing unit 1.8 GHz intel core i7.

The results obtained are structured in Tdlle 3, which synthesize, for eac
instance the bestcf.,:), the worst £,.-s:), the meanz, the variances® and
standard deviation, computed over 20 runs of the best objective function found
by MP-MMC.

In Table[4 are shown 95% confidence intervals determined with bootstrap
method on the mean.

A comparative of the best results obtainedMMC, GRASR TSandSSis
shown in Tabléb and Tablé 6 .
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Table 3: Results obtained by MP-MMC.

n k Lhest Lworst x s S

20| 7 6.9046 7.3472 7.0030 0.0136 0.1167
20| 8 4.6934 4.8391 4.7379 0.0036 0.0603
30|10 7.5749 11.041 9.2173 1.1238 1.0601
30|11 5.889 6.6233 6.1184 0.0370 0.1925

40| 14 7.149 8.3658 7.5801 0.1132 0.3364
40| 15 5.6708 6.747 6.1286 0.1152 0.3395
50|17 8.8613 10.781 9.4673 0.2331 0.4828
50| 18 7.0506 8.7703 7.6847 0.1946 0.4411
60| 20 9.6732 12.033 10.7683 0.4981 0.7058
60| 21 7.5521 9.1749 8.3152 0.2065 0.4544
70| 24 10.395 17.16 11.5579 2.0758 1.4408
70|25 8.773 11581 9.8447 0.3721 0.6100
80|27 10.884 20.375 13.8058 5.5948 2.3653
80|28 9.8818 19.367 11.4210 4.0702 2.01747
90| 30 12.744 22.772 16.1659 6.1485 2.4796
90|31 11.702 20.925 14.3109 4.7573 2.1811
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Table 4: Results boot strap test with = 0.05.

n | ks Lower limit Upper limit
20| 7 6.9561 7.0451
20| 8 4.7158 4.7684
30| 10 8.7883 9.6566
30| 11 8.0561 8.3987
40| 14 7.4516 7.7449
40 | 15 5.9688 6.2570
50| 17 9.2542 9.6508
50| 18 7.4800 7.8490
60 | 20 10.4617 11.0847
60 | 21 8.1183 8.5176
70 | 24 11.1014 12.3329
70| 25 9.6131 10.1025
80 | 27 12.7755 14.6737
80| 28 10.7909 12.5324
90 | 30 15.0804 17.2922
90| 31 13.3681 15.2844

Based on the previous result, we can say that MP-MMC generates the bes
results in 31.25 % of the instances. Also in 62.5% of the instances the MP-MMC
produced the second bests results. Our heuristic is bettef®andGRASHN
the most cases.

The results of the time run of the MP-MMC are shown in the Table 7.
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Table 5: Comparative of results obtained by heuristics.

n | k MMC TS GRASP SS

20| 7 6.9046 7.097 7.1423  6.9046
20| 8 4.6934 4771 4.6934 4.6934
30| 10 7.5749 8.0623 7.5749 7.5749
30| 11 5.889 6.0565 5.9318 5.889
40| 14 7.149 7.1709 7.395 7.0837
40| 15 5.6708 5.8173 6.3117 5.6708
50|17 8.8613 9.8259 8.9531 8.2587
50| 18 7.0506 7.4966 7.1464 6.7164
60| 20 9.6732 9.8331 9.9687 8.8676
60| 21 7.5521 8.2181 8.143 7.238
70| 24 10.395 11.1307 11.2388 9.2634
70| 25 8.773 95478 9.2145 7.7048
80|27 10.884 11.1946 11.7512 9.9835
80|28 9.8818 10.5845 10.2631 8.5961
90| 30 12.744 12.2832 13.4919 10.8911
90|31 11.702 11.3699 11.506 9.5008

Table 6: Comparative of normalizing results.

Instances

n 20 20
7 8

1 3 2

0.9

08| 2

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 1 314

3,14

30 40
1 14
2 3

14 4

50 50
17 18
2 2

4 4

60 60 70
20 21 24

3 2 3

4 4 4

70 80 80 90 90
25 27 28 30 31

2 3 2 3 1

4 4 4 4 4

where: 1is MMC; 2is TS; 3is GRASP; 4 is SS.
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Table 7: Time run obtained by MP-MMC.

2

n k| timepest timeyorse Meantime s s

20 7 38.86 41.99 40.9195 0.5446 0.73796
20 8 37.46 42.41 38.8305 1.6859 1.2984
30 10| 116.18 124.19 121.491 4.4845 2.1177
30 11| 107.27 117.93 111.567 15.3845 3.9223

40 14| 236.07 280.25 255.898 180.4200 13.4321
40 15| 240.22 270.23 251.73 35.6636  5.971903
50 17| 481.05 561.13 509.119 906.7228 30.1118
50 18| 483.49 539.71 494.233 145.0870 12.0452
60 20| 542.09 646.01 581.0425 1103.0155 33.2117
60 21| 544.19 574.51 556.8515 67.1736 8.1960

70 24| 14554 1710.4 1531.145 6033.4331 77.6752
70 25| 1470 1721 1536.795 2370.7847 48.6907
80 27| 1457 1731.8 1572.52 6668.0122 81.6579
80 28| 1469.9 1732.2 1549.285 4006.8401 63.2996
90 30| 3536 3843.9 3674.49 6948.9725 83.3605
90 31| 2312 2672.2 2412.665 7383.1182 85.9251
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5 Conclusions

In this paper, a hybrid between mathematical programming technigques and meta-
heuristics was presented, which was called MP-MMC. The numericaltsesu
illustrate that the MP-MMC has a higher capability to solve instances of the
RCPs, so the MMC generates the best or second best results in 93. #i/baxt
instances.

Future works might focus on extending the use of the MP-MMC to solve
larger instances of the RGCP. Also we must improve the structure of the MP-
MMC for making it more effective.
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