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Abstract

Tide tables are the method of choice for water level predictions in most coastal
regions. However, for many locations along the coast of the Gulf of Mexico, tide tables
do not meet United States National Ocean Service (NOS) standards. Wind forcing
has been recognized as the main variable not included. The performance of the tide
tables is particularly poor in shallow embayments. Recent research has shown that
Artificial Neural Network (ANN) models including input variables such as previous
water levels, tidal forecasts, wind speed, wind direction, wind forecasts and barometric
pressure can greatly improve over the tide charts for locations including open coast and
deep embayments. In this paper, the ANN modeling technique is applied to a shallow
embayment, the station of Rockport, located near Corpus Christi, Texas. The ANN
model performance is compared against the NOS tide charts and the persistence model
for the years 1997 to 2001. The performance is assessed using NOS criteria including
Central Frequency (CF of 15 cm), Maximum Duration of Positive Outliers (MDPO),
and Maximum Duration of Negative Outliers (MDNO). Over the study period, the
performances of the three models (tide table, persistence, ANN) are respectively CF’s
of 85%, 95.8% and 96.9%, MDPOs of 16, 14 and 5.9 hours, and MDNOs of 72.8 hours,
0.6 and 9.5 hours.
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Resumen

Tablas de mareas son el método escogido generalmente para la predicción del nivel
del agua en regiones costeras. Sin embargo, para muchas localidades en la costa del
Golfo de México, las tablas de mareas no satisfacen las normas del Servicio Nacional
Oceánico de los Estados Unidos (NOS, por sus siglas en inglés). La fuerza del viento
ha sido reconocida como la principal variable no incluida. El rendimiento de las
tablas de mareas es particularmente pobre en aguas poco profundas. Investigaciones
recientes han mosrado que los modelos de redes de neuronas artificiales (ANN, por
sus siglas en inglés) que incluyen variables de entrada como niveles previos de agua,
previsiones de mareas, velocidad del viento, dirección del viento, predicción del viento,
y presión atmosférica, pueden mejorar en gran medida los gráficos de mareas para
localizaciones que incluyen mar abierto y aguas profundas. En este art́ıculo, la técnica
de modelación de ANN es aplicada a una estación de aguas poco profundas, la estación
de Rockport, localizada cerca de Corpus Christi, Texas. El rendimiento del modelo
ANN es comparado contra los gráficos de mareas NOS y el modelo de persistencia
para los años 1007 a 2001. El rendimiento es medido usando los criterios NOS, que
incluyen Frecuencia Central (FC de 15 cm), Máxima Duración de Puntos At́ıpicos
Positivos (MNPO), y Máxima Duración de Puntos At́ıpicos Necagativos (MDNO).
Sobre el peŕıodo de estudio, el rendimiento de los tres modelos (tabla de mareas,
persistencia, ANN) son, respectivamente, CF de 85%, 95.8% y 96.9%, para MDPO es
16, 14 y 5.9 horas, y para MDNO es de 72.8, 0.6 y 0.5 horas.

Palabras clave: Redes neuronales, predicciones, nivel del agua, Red de Observación
Oceánica de la Costa de Texas, Golfo de México, análisis armónico, gráficos de mareas,
modelo de persistencia, previsiones.

Mathematics Subject Classification: 62M45.

1 Introduction

In recent years the importance of marine activities has grown steadily. With the growth
of the economy the shipping industry has seen its activity increase leading to a push
towards larger deeper draft vessels. The operation of such vessel would greatly benefit
from accurate advanced water level related information. The coastal communities at large
would greatly benefit from such forecasts as well, especially during tropical storm events.
A comparison of measured water levels with tidal forecasts is presented in Figure 1. The
research team at Texas A&M University-Corpus Christi, Division of Nearshore Research,
has taken on two main tasks: the design of a model that will provide more accurate
results than the currently relied upon tide charts, and to make the results from this model
accessible to the marine community.

The area of interest for this work is Rockport, TX. Rockport is a coastal community of
7385 people, and at its maximum elevation is only two meters (approximately five feet) in
height [2]. In general, all of the tourist activities, restaurants, and entertainment facilities
are located near the water, no more than a few inches above the water level in Aransas
Bay, a particularly shallow embayment (See Figure 2).

Several approaches have been considered to solve the task of providing a more accurate
model. One approach considered was Multivariate Statistical Analysis, which focuses on



artificial neural network predictions of water levels 141

Figure 1: Comparison of the Rockport Tide Chart predictions (gray) and the actual water
level measurements (black) in 1998. Notice the discrepancy between the predicted and
actual values.

linear regression models coupled with harmonic analysis of the astronomical forces causing
the tides [3]. This work was focused on the other main technique investigated: Artificial
Neural Networks. To date, the Artificial Neural Network models have provided more
accurate results for open coast and deeper embayments, but had not been tested for such
shallow embayment. The Artificial Neural Networks took into account the astronomical
tide information in addition to time series of measured water levels, wind speeds and wind
directions and barometric pressures.

The input data had been queried from data compiled for more than 10 years in the
real-time database of the Texas Coastal Ocean Observation Network [4] (See Figures 3,4).
The models were trained over large data sets, and all the results were then compared using
the National Ocean Service skill assessment statistics, with an emphasis on the Central
Frequency. Central Frequency is the ratio of predictions that are within plus or minus X
cm from the actual measurement. For NOS to consider a model operational, its Central
Frequency of 15 cm must be equal or greater than 90%. The tide charts (the current
method of water level predictions) for the entire coast of Texas did not pass the standard
(see Figure 5). The deficiency of the tide charts and its cause are known as the National
Oceanic and Atmospheric Administration (NOAA) stated, for example, that “presently
published predictions do not meet working standards” when assessing the performance of
the tide charts for Aransas Pass, Texas [5,6].

The first test for a new model to be accepted is that it must improve upon the perfor-
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Figure 2: Rockport, TX. The city is located 35 miles from Corpus Christi, one of the
nations most active ports.

mance of a benchmark model called the persisted difference or “Persistence” model. The
persistence model relies on the inference that a presently observed distance between the
tide chart prediction and the actual water level will persist into the future. The Persis-
tence model basically takes an offset and applies it to the tide charts for the prediction.
It is simple and yet considerably more effective than the tide charts in predicting water
levels along the Texas Gulf coast. Once this benchmark was incorporated, the objective
shifted to the development and assessment of an ANN model applied to various locations
along the Gulf Coast and within shallow estuaries and embayments.

2 Site description, methodology and model

As mentioned previously, the focus of this study was a small coastal town named Rockport,
TX. Rockport is most directly affected by Aransas Bay, which is linked to the Gulf of
Mexico through Aransas Pass (See Figure 2). The barrier island protecting Rockport
from the effects of the Gulf is called San Jose Island, which is also connected to Matagorda
Island. The shallow waters between the barrier islands and the Rockport coastline lead to
a delay between the observed water level trends in the Gulf and in Rockport. In general,
what is observed in the Gulf takes a few hours to register in the affected bays. Most of the
directly observed water level changes had been correlated with strong winds and frontal
passages [7,5,6]. This made it important to test the inclusion of winds as part of the
input to the ANN model, but many other factors must also be considered. The presently
used Artificial Neural Network model includes previous water levels measurements, tidal
forecasts, previous wind speed and wind direction measurements, wind forecasts, and
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Figure 3: The Texas Coastal Ocean Observation Network (TCOON). Over 50 stations
relay real-time environmental and oceanographic data for observations of the Gulf Coast.

barometric pressure. A schematic of the model is presented in Figure 6. Although a
plethora of other time series data is available, it was shown through factor analysis that
only a few components were actually necessary to model the water level changes [3]. Five
years of hourly data between 1997 and 2001 were chosen to train and test the ANN model.
Less than 2% of the data was missing for each one of the data series (See table 1) used
in this work except for the Bob Hall Pier 1999 data set where 2.2% of the wind data
was missing. The gaps were filled by linear interpolation within the gaps for wind data
and for water level gaps, the tidal component of the water level was first subtracted, then
the gap was filled by interpolation, and finally the tidal component was added back in.
All water level measurements were in reference to mean lower low water levels because
the main audience for our predictions was ship captains, and many nautical charts use
this as their reference point. The tidal forecasts, water levels, and all meteorological data
were downloaded from the Texas Coastal Ocean Observation Network database. The
tide forecasts were computed using a years worth of water level data and 26 harmonic
constituents, using NOAA procedures [8]. The information from the different inputs was
scaled to a [−1.1, 1.1] range and inserted into the first layer of an Artificial Neural Network
called the hidden layer (See figure 6). A set of random numbers was picked to start the
training process, then weights and biases were progressively optimized to adjust to the
desired output or target. The number of layers could be varied with each case, but previous
studies [1,9] in Galveston Bay and Corpus Christi Bay showed that simple Artificial Neural
Networks using only one hidden and one output layer were the most effective.

All ANN models had been developed, trained, tested, and assessed in the MatLab R13
environment and using the Neural Network Toolbox [10]. The computers using MatLab
ranged in processor speed from 450 MHz to 2.6 GHz. The Levenberg-Marquardt algorithm
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Figure 4: A typical TCOON station. Each station records a variety of time series data
then transmits the data to the TCOON database.

found in the Neural Network Toolbox was used to train the ANN model. The model was
trained over one year of data, then applied to the other four years to create five training
sets and twenty testing sets. The average performances were computed over the testing
sets. The effectiveness of the models were determined using the National Ocean Service
skill assessment statistics(See table 2)

Rockport (data is hourly)
Data Set Data Set Span Data Available % pwl Max Dur Miss

Year Missing Data (pwl)
1996 1/1/96 – 12/31/96 pwl, wtp, harmwl, sig 1.40% 112 pts.
1997 1/1/97 – 12/31/97 pwl, wtp, harmwl, sig 0.53% 22 pts.
1998 1/1/98 – 12/31/98 pwl, wtp, harmwl, sig 0.43% 23 ts.
1999 1/1/99 – 12/31/99 pwl, wtp, harmwl, sig 0.13% 4 pts.
2000 1/1/00 – 12/31/00 pwl, wtp, harmwl, sig 0.14% 7 pts.
2001 1/1/01 – 12/31/01 pwl, wtp, harmwl, sig 0.05% 1 pt.

Table 1: Availability of data for the Rockport station from 1996-2001, and a summary of
the missing data.

3 Optimization and application

The first step in the optimization of the Artificial Neural Network was to find the number
of previous water levels optimizing the accuracy of the water level forecasts. The average
Central Frequency (CF) was used to evaluate the accuracy of the forecast. Previous water
levels were added to the model in increments of three previous hours until the optimum
CF was reached for that forecast, then the same process was repeated for increased fore-
casting times. Once the optimum number of previous water levels was found, the typical
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Figure 5: Comparison of six coastal stations and their respective RMSE and Central
Frequency for the tide charts. The NOS standard is 90%, and the best value is 89.1%.

Error The predicted value p minus the observed value r
SM Series Mean; the mean value of a time series y

RMSE Root Mean Square Error
SD Standard Deviation

CF(X) Central Frequency; % of errors within the limits of −X and X
POF(2X) Positive Outlier Frequency, % of errors greater than X
NOF(2X) Negative Outlier Frequency; % of errors less than −X

MDPO(2X) Maximum Duration of Positive Outliers
MDNO(2X) Maximum Duration of Negative Outliers

Table 2: NOS Skill assessment statistics. The Central Frequency is the main performance
assessment.

methodology would have been to include previous winds. However, since the Rockport
station did not have wind data during the time of study this step was eliminated. The
next step in the optimization was to find the best number of previous water levels for
another nearby station considered, starting with Bob Hall Pier, an open coast station.
The same process was used for these previous water levels until the best combination of
water levels from Bob Hall Pier and Rockport was found. Then, using the optimal water
levels from Rockport, the third station, Port Aransas, was also evaluated. Once again,
previous water levels were increased until the optimum number was found. Bob Hall Pier
and Port Aransas have complete wind data, so once the optimal water levels were estab-
lished, the winds for these stations could be incorporated into the model. Previous winds
were added in the same fashion as water levels: increasing the number of previous winds
by three hours at a time until the optimum or 48 hours previous is reached. The final step
in optimization was incorporating the wind forecasts. In the operational models the wind
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Figure 6: An example of a typical Artificial Neural Network with an input deck of five
components, two hidden layers and one output layer.

forecasts will be provided by the National Center for Environmental Predictions (NCEP)
Eta-12 model. However, a historical database of past forecasts did not exist. For the pur-
pose of this study, wind forecasts were created using the actual wind measurements. The
performance of the ANN for the Rockport station was significantly improved when the
wind forecasts from Bob Hall Pier were included, but not when including wind forecasts
from the Port Aransas station. Changing the number of neurons was also a possibility in
finding the optimized model, but previous studies [11] showed no significant improvement
in the results. In general more accurate forecasts were observed when larger numbers of
previous water levels were used. The optimal ANN model changes slightly for different
forecasts times, but in general, using 24 hours of previous water levels at Rockport, 24
hours of previous water levels at Bob Hall Pier, and 12 hours of previous wind speeds and
wind directions at Bob Hall Pier lead to the most accurate water level forecasts without
using wind forecasts. This model resulted in a CF(15 cm) of 99.59% for a 3-hour forecast,
99.20% for a 12-hour forecast, 97.85% for a 24-hour forecast, and 91.33% for a 48-hour
forecast. Even for a two-day water level forecast, the model stays about 1.3% above the
NOS criteria for a successful model or 90%. The tide charts, however had a CF(15 cm)
of 85%, and the Persistence Model, 87.18% for 48-hour forecasts. Both of which were
below the standard for an acceptable model. Adding the Bob Hall Pier wind forecasts to
the model increased the CF by 3.6% (See Figure 7) which emphasized the importance of
having wind forecasts available for the operational model.

4 Discussion

The performance of the ANN at the Rockport station was to improve significantly upon all
other discussed models. The 91.33% CF for 48-hour forecasts is a significant improvement
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Figure 7: The effects of the inclusion of wind forecasts. The top line is the ANN model
using Rockport previous water levels, Bob Hall Pier previous water levels and wind mea-
surements, and Bob Hall Pier wind forecasts, which led to an increase in CF(15cm) of
3.5%. The second line is using information from Port Aransas, and the third line is using
information from Rockport only. The bottom line is the tide chart prediction.

over the other models considered (85% for the tide charts and 87% for the Persistence
model). It was interesting to find that data from Bob Hall Pier was more helpful in
improving forecasts than data at Port Aransas, likely because geographically, Port Aransas
is closer to Rockport and also shielded from the Gulf of Mexico by the barrier islands. In
particular, the wind data at Port Aransas is affected by the island and the ship channel,
or Aransas Pass has a dampening effect on the water level changes. The importance
of winds can be observed in the increase in accuracy when this information is added to
the model. A 0.4% increase in CF was observed when wind data was incorporated, and
although this seems like a small difference, practically this represents an additional day
and a half for which the predictions will be within the ±15cm range. When wind forecasts
were used there was a 3.6% increase in effectiveness which corresponds to an additional
13 days of acceptable water level predictions. Archived wind forecasts were not available
throughout this research, so the forecasts were obtained from actual measurements. The
real-time model will utilize the Eta-12 wind forecast database, made available through
a collaboration with the Corpus Christi Weather forecasting Office [12]. These forecasts
have already been tested in a separate study of three local stations: Bob Hall Pier, Naval
Air Station, and Port Aransas [13]. This study and a related one on Galveston Island
[14] showed that the difference between wind forecasts and wind measurements was not
significant for the model, and that the water level predictions were not significantly affected
by the likely differences between forecasts and measurements. Incorporating accurate
wind forecasts will be particularly important when predicting water levels during frontal
passages. The ANN has difficulty in catching very rapid changes in water levels without the
association of wind forecasts during sudden changes in wind speeds and wind directions.
The application of the ANN to tropical storms and frontal passages was also found to
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be very effective for up to 24-hour forecasts for the case of Tropical Storm Frances (See
figure 7). Throughout this storm, the Neural Network stayed within 10 cm of the water
level most of the time, and at its worst, was off by about 18 cm (just over half a foot).
The application of the model to tropical storms is being studied, but caution should be
exercised as each storm is unique.

Figure 8: The performance of the ANN during Tropical Storm Frances. This model
was trained on data from 1997, then applied to 1998. Black is the ANN performance,
underlying gray is actual water levels, and the harmonic pattern on the bottom is the tide
chart prediction.

5 Conclusions

The Rockport station was the first shallow water station that the Division of Nearshore
Research tested its ANN models on. The results showed that the ANN outperforms all
present models for the Rockport station (See Table 3). The tide charts and the Persistence
models do not meet the NOS criteria, while the Linear Regression model and the Neural
Network Models (one with wind forecasts and one without) showed accuracy above the
90% CF criteria with the ANN model including wind forecasts having the best perfor-
mance at 94.5%. The effectiveness of the model shows that a strong correlation can be
established between water level forecasts and meteorological factors. The optimal model
is a combination of the previous water levels at both Rockport and Bob Hall Pier, and
previous wind information from the same coastal station. In this case, 24 hours of previous
water levels at both Rockport and Bob Hall Pier, and 12 hours of previous winds at Bob
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Hall Pier. Wind forecasts significantly improve the water level forecasts and efforts are
being made to incorporate Eta-12 wind information into the model. The success of the
ANN model during Tropical Storm Frances was intriguing and somewhat unexpected, and
provides incentives for the development of new storm models. Other further developments
include the use of engineered training sets. Such custom made training sets could provide
the ANN’s with a higher density of storms and therefore a better performance during such
weather events. The simplicity and effectiveness of the tested Artificial Neural Network
models has shown that this powerful and flexible modeling technique should benefit the
marine community when models will be made available via the World Wide Web in late
Fall, 2003.

Model RMSE CF POF NOF MDPO MDNO
Harmonic 0.11±0.02 85.02±4.12 0.21±0.19 1.90±2.51 16±16 73±81
Pers 24hr 0.069±0.006 95.75±1.19 0.249±0.231 0.023±0.029 14±19.17 0.6±1.342
NN-1 24hr 0.0588±0.0085 97.848±1.515 0.132±0.114 0.104±0.232 8.5±8.7 7.6±18.5
NN-2 24hr 0.053±0.0079 98.563±1.284 0.124±0.115 0.08±0.204 8.4±8.7 6.2±17.1
Pers 48hr 0.101±0.009 87.18±2.22 0.785±0.528 0.424±0.255 25.4±17.813 13.8±10.232
NN-1 48hr 0.0889±0.0123 91.396±2.768 0.199±0.158 0.57±0.937 9.6±7.6 26.4±37.7
NN-2 48hr 0.0779±0.0108 94.500±2.616 0.123±0.162 0.299±0.575 6.8±9.6 16.3±30.7

Table 3: Comparison of the present models. The Central Frequency is the main skill
assessment used, and it is shown that the ANN model outperformed the other models in
all cases.
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