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Abstract

A formula for complex zonal polynomials of second order is derived by solving a
particular partial differential equation.

Keywords: Laplace-Beltrami operator, zonal polynomials, Hermitian matrix, Legendre’s
differential equation.
Resumen

En el presente trabajo se encuentra una férmula para polinomios zonales complejos
de segundo orden, a partir de una ecuacién diferencial parcial.
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1 Introduction

Recently Diaz-Garcia and Caro-Lopera (2006b) computed the zonal polynomials of posi-
tive definite hermitian matrix by the use of the Laplace-Beltrami operator. In the same
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way for the real case, the zonal polynomials of positive definite and a semi-definite positive
symmetric matrices were calculated by James (1968) and Diaz-Garcia and Caro-Lopera
(2006a), respectively. It is known that general formulae for complex and real zonal polyno-
mials are not available, and the general partial differential equations for both polynomials
are also unsolved. However, the differential equation for the zonal polynomials of definite
positive symmetric matrix argument of the second order was solved by James (1968).

In this paper we reduce the partial differential equation for zonal polynomials of pos-
itive definite hermitian matrix of second order to a Hypergeometric differential equation
type, which is analogous to the results obtained by James (1968) in the real case. By
solving the ordinary differential equation, we get an explicit formula for the corresponding
zonal polynomials, see Section 2.

2 Complex Zonal Polynomials of Second Order.

Let the partition x = (ki,...,kn) of k a decreasing sequence of nonnegative integers. In
Diaz-Garcia and Caro-Lopera (2006b) was proved that the zonal polynomials Cy(Y") of an
m X m positive definite hermitian matrix Y satisfy the partial differential equation

m 2 m m
2 0" & 1 9

Zyz 2 )+ 22 Z v (i —yj) 5 Ch(Y) =
0y ~ i
i=1j=1(#1)
(B + k(2m — 1)]C(Y), (1)
where .
Pr = Z ki(k; — 2i),
i=1
Y1, .-, Ym are the eigenvalues of the matrix Y and x = (ky,..., k) is a partition of k.

When m = 2 in (1) we get the partial differential equation

620+ 8C+2 ( )1£_2 (y1 — ) E_
[kl (kl + 1) + kg(kg — 1)]@ =0, (2)

where we denote Cy(Y) as C.
Let us replace u = y; + y2 and v = y1y2 in (2), then we find

d*C 2820 9*C aC aC ~
(u? — 21})87 +2v 502 + 2uv8u8v + 211,% + 20% — [k1(k1 + 1) + ko(k2 — 1)]C =

u
Substituting z = —~= and t = /v we obtain

2V/v
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It is easy to see that the last equation is homogeneous in ¢. Thus by taking

C=tf(2),
the next ordinary differential equation results
d’f df
1—2%)—5 — 32— + [(ky — ko) (k1 — ko +2)]f = 0.
(1= ) S~ 320+ [k — )y — by + 2)f
Taking w = (1 — z)/2 as the independent variable, the differential equation becomes
df 3 df
1—w) ol 21— 2uw)-L Nf =
w(l —w)——5 + 5 (1= 2w)—~ +plp +2)f =0, (3)

with p = k1 — ko, a non negative integer, according to the definition of the partition .
Comparing with the general hypergeometric equation

d*f df
w(l—w)m—i-[c—(a—i-b—i-l)w]%—abf:O, (4)
we see that the complex zonal polynomials are involved in the solution of an hypergeo-
metric differential equation of parameters a = —p, b= p+ 2 and ¢ = 3/2.

Following Erdélyi et al. (1981), we know that a solution of (4) which is regular at w = 0
is given by

o (@)n(b)
f('U)) = Z #wn - 2F1(a’7 ba C;'U)),
where 9 F} (a, b; ¢; w) is the classical hypergeometric function, which we will denote in front

by F(a,b;c;w).
Thus a solution of (3) is

31—z
=F (- + 20— —
f(Z) ( pvp 727 2 )7

Let us refined the above solution by applying properties of the hypergeometric functions.
From Erdélyi et al. (1981, Section 2.11, p.111), equation (2), we see that

1 1
F<2d,2e;d+e+§;t> :F(d,e;d+e+§;4t(1—t)>,

then
31—z
= F(- 9. 2.2~
f(2) ( PPt 25— >
Y N L (5)
2’9 " Y

By Erdélyi et al. (1981, Section 2.10, p.108), equation (1),

F(a,b;c;t) = AiF(a,b;ja+b—c+1;1—1t)
+ Ag(l—t)cfa*bF(c—a,c—b;c—a—b—i—l;l—t),
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where

I'(e)l'(c—a—0) F(C)F(a—i—b—c).

YT Te—a)l(c—p) M 2 T(a)T(b)
Then (5) can be written as follows
pp 3 pp L
F 1,251 — = AF(-5 5841,
(2’2+ 2’ Z> ! (2’2+’2’Z>
1
caer (g5,
where N 5 .
. I'(5)(3) and Ay — I'(5)(—3)
L(3+ 5Tz~ 5) I(=5rE+1)

If p=ki — ko =2n,n=0,1,2,..., and using the fact that I'(3 + 2)I'(3 — 2) = 7 sec(zm)
and I'(2)I'(1 — 2z) = wesc(zm) Wthh 1mphes A = (2;21 and As = 0, respectively, then the

even complex zonal polynomials of second order are given by

1 (i + y2)2>

- ~ k (—1)"
C(k‘l,k‘g)(y)/c(kl,kg)(IQ) = (9192) 2 F <_n; n + 17 27 4y1y2

2n+1

Ifp=ki—ks=2n+1,n=0,1,2,... and using the same properties for the simplification
of A’s then we find the odd complex zonal polynomials of second order

2
(-1 2L <n—|—2,—n;§; (y1 +y2) > ’
2192 2 4y

(S b

é(k1,k2)(Y)/é(k1,k2)(12) (ylyQ)

where 2% < 1 and )
~ (kr — ko +1)
C L)=Fk-—— "=
(k;1,k:2)( 2) (kl T 1)!(k2)! ’
see Khatri (1970).
These formulae agree with the expressions found for the complex zonal polynomials in

Farrell (1980) until the 5th degree.
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