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Abstract

An universal modification of the method of discrete sources (MMDS) was applied
for solving 2D Dirichlet or Neumann boundary problem when the scatterer’s contour is
a piece-wise smooth contour. The problems of accuracy, choosing auxiliary contours,
stable results, location and type of contour’s break points are discussed.
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accuracy.

Resumen

Una modificación universal al método de fuentes discretas (MMDS) ha sido apli-
cada para resolver problemas 2D de frontera de Dirichlet o Neumann cuando el con-
torno del dispersador es un contorno suave a trazos. Se discuten los problemas de
precisión, escogiendo contornos auxiliares, resultados estables, localización y tipo de
contorno en los puntos de quiebre.
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1 Introduction

In recent years it is seen that such method as the method of discrete sources (MDS) [1] is
widely practiced due to their simplicity. One could find too that MDS had three stages in
its developing. The first one deal with work [1] in which had been proved the completeness
for a set of fundamental solutions (auxiliary sources) to the 2D (or 3D) Helmholtz equation
(the vector case was considered too). These fundamental solutions have singularities on a
certain closed auxiliary surface Σ (or auxiliary contour Σ) inside of the scatter but theorems
had been proved by V.D. Kupradze [1] places almost no constraints on the geometry of the
auxiliary surface Σ (auxiliary contour Σ). The second stage was connected with numerous
publications in which MDS has been applied for numerical solution of many scattering
and diffraction problems. However, only one essential scientific result was achieved in this
period —it was detected the fact of unstable algorithms and decreasing accuracy with
increasing the number of auxiliary sources—. In works [2,3,4], A.G.Kyurlchan found the
origin of this effect and constraints on the geometry of Σ were formulated in the form of
the theorem. According with his theorem an auxiliary contour Σ have to enclose all of the
singularities of the diffracted field inside of the scatter’s surface (contour) S. Nevertheless
almost all published works [5,6 and references in them] do not satisfy to condition of this
theorem and its results could not be considered as correct one. But that theorem also did
not show the way of constructing geometry of auxiliary surface Σ (or auxiliary contour Σ)
and its location. So, the third stage was made in [7,8] where the way of the constructing
for MDS was appointed and named as universal modification of the method of discrete
sources (MMDS). But both MDS and its universal modification MMDS have one essential
restriction —the surface (cross-section contour) of the scatterer has to be described by
analytical function only–.

This paper is concerned the extending MMDS technique for solving a scattering prob-
lem by 2D scatterer with piece-wise smooth contour. The problem of choosing the auxiliary
surfaces, accuracy and types of the contour’s break points were considered too.

2 2D Scattering Problem

At first let us consider a scattering of E polarized wave u0(~r) by perfect conducting cylinder
with cross section contour S:

ρ(ϕ) = r1(ϕ) for ϕ1 ≤ ϕ ≤ −ϕ1, (1)
ρ(ϕ) = r2(ϕ) for ϕ 6∈ [−ϕ1, ϕ1],

r1(±ϕ1) = r2(±ϕ1),

in cylindrical system of coordinates (z, r, ϕ), r1(ϕ), r2(ϕ) functions describing two parts
of the contour S (see Fig.1a).

Diffracted field u1(~r) is a solution of the Helmholts equation

∆u1 + k2u1 = 0 (2)
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without of S and satisfies to Dirichlet boundary condition (E polarized incident wave) on
S

u(~r)|S ≡ [u0(~r) + u1(~r)]|S = 0 (3a)

or Neumann boundary condition (H polarized incident wave) on S

d

dn
u(~r)|S ≡ d

dn
[u0(~r) + u1(~r)]|S = 0 (3b)

and Sommerfeld radiation condition

∂u1(~r)
∂r

+ iku1(~r) = o(r−1/2), |r| → ∞ (4)

where k is a wave number of the free space.
According to the MMDS, the diffracted field u1(~r) outside of S could be presented as

follows

u1(r, ϕ) =
M∑

m=1

AmH
(2)
0 (k|~r − ~rm|). (5)

Here, H
(2)
0 (k|~r − ~rm|) is the fundamental solution to the Helmholz equation (auxiliary

source); Am are the coefficients to be determined; |~r−~rm| = [r2+r2
m−2rrm cos(ϕ−ϕm)]1/2

is the distance between points given by the radius vectors ~r and ~rm in polar coordinates;
~rm are the radius vectors positions of the sources on auxiliary contour Σ; M is the total
number of auxiliary sources on Σ. Placing ~r on S and satisfying (3) in M points we could
obtain a system of M linear algebraic equations for unknown coefficients Am.

Figure 1:(a): Structure of the original S1, S2 contours and auxiliary Σ1, Σ2 contours for
(7) and ϕ1 = π/2.

As function ρ(ϕ) for total contour S consists of two smooth functions r1(ϕ), r2(ϕ)
accordingly and presented by (1) then we will construct a total auxiliary contour Σ as a
contour consisting of two auxiliary contours Σ1 and Σ2 (see Fig.1a). For each auxiliary
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contour Σ1 (we consider that it has equation rΣ1(θ)) and Σ2 (we consider that it has
equation rΣ2(θ)) we construct auxiliary contours rΣ1(ϕ), rΣ2(ϕ) accordingly by analytical
transformation of the each original contours r1(ϕ), r2(ϕ) [2-4,7,8] as follows:

ζ1 = r1(ϕ) exp{iϕ}; ϕ = ϕ′ + iϕ′′
1;

rΣ1(θ) = |ζ1|; θ = arg ζ1 for − ϕ1 ≤ ϕ′ ≤ ϕ1
(6)

for Σ1 contour, and

ζ1 = r2(ϕ) exp{iϕ}; ϕ = ϕ′ + iϕ′′
1;

rΣ2(θ) = |ζ2|; θ = arg ζ2 for other ϕ′ (7)

for Σ2 contour.
In case of two original contours r1(ϕ), r2(ϕ) as ellipses (see Fig.1a)

r1(ϕ) = a1/
√

1 − ε2
1 cos2(ϕ); ε2

1 = 1− (a1/b1)2;

r2(ϕ) = a1/
√

1 − ε2
2 cos2(ϕ); ε2

2 = 1− (a1/b2)2;
(8)

or ellipse and rectilinear line (see Fig.1b)

Figure 1:(b): Structure of the original S1, S2 contours and auxiliary Σ1, Σ2 contours for
(8) and ϕ1 = π/6.

r1(ϕ) = a1/
√

1 − ε2
1 cos2(ϕ); ε2

1 = 1− (a1/b1)2; for

−ϕ1 ≤ ϕ ≤ ϕ1 and π − ϕ1 ≤ ϕ ≤ π + ϕ1

r2(ϕ) = r1(ϕ1)/ sin(ϕ) for π − ϕ1 ≤ ϕ ≤ ϕ1, and
π + ϕ1 ≤ ϕ ≤ 3π/2 + ϕ1

(9)

or ellipse r1(ϕ) (8) and r2(ϕ) as multifoil

r2(ϕ) = a + b cos(qϕ), q = 2, 3, . . . (10)
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one could obtain an analytical expression for ϕ′′
1,2 = ϕ′′

q1,2−δ (where ϕ′′
q1,2 determinates the

location of auxiliary contour Σq1,2 which is passed through singularities, δ is a parameter
showing difference between Σq1,2 and Σ contours) [5-8]. If ri(ϕ) is arbitrary analytical
function then value ϕ′′

qi could be found by numerically [9,10].
We would like to remind that total auxiliary contour Σ have to enclose all principal

singularities and only in this case we will have a unique solution of scattering problem [2-4].
These singularities consists of singular points of the analytical extension of the function
u0(~r)|S to the region inside S, points at which one-to-one correspondence (6) or (7) is
violated satisfying the relationship

ζ ′ = [ρ′(ϕ) + iρ(ϕ)] exp(iϕ) = 0, (11)

the imaginary source on physical list of the Riemann surface (in case of cylindrical incidence
wave) and break points of total original contour ρ(ϕ). The influence of the imaginary
source’s location and singular points (11) on accuracy was investigated in [7-10]. In this
paper we explored the influence of the type of breakpoints for total original contour’s
function ρ(ϕ) on accuracy problem.

Some examples of constructed original S and auxiliary contours Σ are presented at Fig.
1a and Fig.1b, respectively. These contours were under consideration when the scattering
pattern was calculated and accuracy problem was explored. We would like to stress the
difference between constructing auxiliary contours Σ1, Σ2 in Fig.1b and Fig.1c. In the
first case (Fig.1b) we make an analytical transformation of the original contour but for
second one (Fig.1c) we use a simple straight line (Σ2) for connection of the end’s points
of Σ1. Such type of approximation is often used in practice.

Figure 1:(c): Structure of the original S1, S2 contours and auxiliary Σ1, Σ2 contours for
(8) and ϕ1 = π/6.

The accuracy of the solving problems we estimate as the residual ∆ = |u0(~rS)−u1(~rS)|
of the boundary conditions in the middle point for each m−interval on S:

ϕm+1 − ϕm; m = 1, . . . , M ; ϕm = 2mπ/M.
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3 Discussion of the results

First of all we had explored the scattering of the plane incident wave

u0 = exp{−ikr cos(ϕ− ϕ0)} (12)

by elliptical cylindrical structure (8) with ϕ1 = π/2. In this case we had a situation when
function ρ(ϕ) (1) is continuous (r1(±ϕ1) = r2(±ϕ1)) and its deviation (dr1(±ϕ1)/dϕ =
dr2(±ϕ2)/dϕ = 0) is continuous too (see Fig. 1a). Elliptical structure (8) had parameters:
ka1 = 4, kb1 = 12, ka2 = 4, kb2 = 6 (kD ≈ 18; D is a maximum size of the scatterer’s
domain) or when ka1 = 20, kb1 = 60, ka2 = 20, kb2 = 30 (kD ≈ 90 � 1); angle of
incidence ϕ0 was changed from 0 up to π; M = 256 and δ = 10−6. By the way, we had
for residual’s value max(∆) ≤ 1.2 × 10−11 in case of single ellipses (r1(ϕ) or r2(ϕ)) with
M = 256 and δ = 10−6. It was detected that residual ∆ practically does not depend both
on the angle ϕ0 and the value kD. A typical figure of ∆ is presented at Fig. 2. It is seen
that ∆ has two rather narrow maximums in the neighbor of the breakpoints of S(Σ) and
we have a total reducing of the accuracy for all points of the contour S. But at any rate
we have following estimation log(∆) ≤ −5 for all points on S.

Figure 2: The residual for two ellipses’ structure (8) and E polarized plane incident wave
and ϕ0 = 0.

The relative amplitude of the scattering pattern for two ellipses’ structure (8) with
parameters: ka1 = 4, kb1 = 12, ka2 = 4, kb2 = 6 (kD = 18) M = 256, δ = 10−6 and E

polarized plane incident wave with ϕ0 = π/2 is presented by Fig.3.
The residual ∆ for cylindrical structure (8), ka1 = 20, kb1 = 60, ka2 = 20, kb2 = 30

(kD = 90) M = 512,δ = 10−6 and H polarized plane incident wave with ϕ0 = π/2
presented at Fig.4. It is seen that residual ∆ has just the same view as the curve at Fig.2
but we have some worse value ∆ then for a case of E polarized plane incident wave. The
relative amplitude of the scattering pattern for this case is shown at Fig.5.

The residual ∆ for of cylindrical structure (9) with parameters: ka1 = 4, kb1 = 12,
ϕ1 = π/6,ϕ0 = 0, M = 512, δ = 10−6 is presented at Fig.6. In this case we see that residual
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Figure 3: The relative amplitude of the scattering pattern for two ellipses’ structure (8)
and H polarized plane incident wave (kD ≈ 18).

Figure 4: The residual for two ellipses’ structure (8) and H polarized plane incident wave
(kD ≈ 90).

∆ have four maximums in neighbor of the breakpoints S(Σ) and we have a reducing of
total accuracy (min(∆) ≈ 10−7 and max(∆) ≈ 10−3) for all points on contour S.

Other situation takes place when we use a simple straight-line approximation (for
auxiliary contour Σ2) for connection of the end’s points of auxiliary contours Σ1. This
type of approximation is often using in practice. Having made a substitution of auxiliary
contour Σ2 by rectilinear line we gets a structure presented at Fig. 1c. It is characterized
by the existence of four breakpoints for S and Σ contours.

The residual’s distribution ∆ on S for this situation is shown at Fig.7 and relative
amplitude of the scattering pattern at Fig.8 respectively. One could see from Fig.7 that
the value max(∆) ≤ 10−2 for all points on S. So, accuracy situation is much worse then
for Fig. 2,4,6 when an analytical transformation of original contour was made.

¿From Fig.8 one can see that the relative amplitude of the scattering pattern has
oscillations in π < ϕ < 2π region (it is shadow region for incident wave). As we are
in kD � 1 region then it could be explained as follows. It is known that breakpoint
of S radiate a diffraction wave (or Keller’s diffracted edge rays of Geometrical theory of
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Figure 5: The relative amplitude of the scattering pattern for two ellipses structure (8) and
H polarized plane incident wave (kD ≈ 90 � 1); 1−ϕ0 = 0, 2−ϕ0 = π/4, 3−ϕ0 = π/2,
4 − ϕ0 = π.

Figure 6: The residual for ellipse-line structure (9) Fig.1b and E polarized plane incident
wave.

diffraction [11,12]). In our case we have situation when two breakpoints of S are located
both in light and shadow region of S respectively. In light region amplitude of diffracted
edge rays are small with regard to the amplitude of the geometrical optic rays. In shadow
region the geometrical optic rays are absent. So in this region we have interaction of the
fields for diffracted edge and gliding rays as their amplitudes are commensurably.

At the end of this part we consider situation when total contour S consists of ellipse
(8) (with parameters ka = 10; kb = 40) and multifoil (10) (with parameters ka = 9;
kb = 1; q = 24). The structure of original and auxiliary contours is shown at Fig.9. Fig.10
illustrates the relative amplitude of the scattering pattern for plane incident wave with
angle of incidences ϕ0 = 0 and ϕ0 = π when M = 800 and δ = 10−6.

It stands to reason that presented results show that accuracy situation of MMDS
became worse in case of existing the break points for original contour S. Nevertheless, the
accuracy is rather high when functions rΣ(θ) and drΣ(θ)/dθ for total auxiliary contour
Σ are continuous. Otherwise we will have a bad situation for accuracy. It is clear that
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Figure 7: The residual for ellipse-line structure (9) Fig.1c and E polarized plane incident
wave.

Figure 8: The relative amplitude of the scattering pattern for ellipses-line structure Fig.1c
and E polarized plane incident wave with ϕ0 = π/2.

procedure described above could be applied for approximation an arbitrary contour S as
it could be presented by pieces of ellipse, multifoil and straight lines.

4 Conclusion

The developed results show that MMDS could be applied directly for solving a scatter-
ing problem by scatterer with piece-wise smooth contours and a high accuracy could be
achieved. The method can easily be extended to 3D case and vector fields.
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Figure 9: Structure of the original contours and auxiliary contours Σ for ellipse-multifoil
cylindrical structure (10).

Figure 10: The relative amplitude of the scattering pattern for ellipse-multifoil structure
(10) and H polarized plane incident wave with ϕ0 = 0.
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