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Abstract

We review how to construct the Paneitz operator in dimension four and the cor-
responding operator in dimension six, by constructing symmetric bilinear differential
functionals that are conformally invariant.
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Resumen

Revisamos como construir el operador de Paneitz en cuatro dimensiones y el co-
rrespondiente operador en seis dimensiones, mediante la construcción de funcionales
diferenciales bilineales simétricos que son conformemente invariantes.

Palabras clave: Invariantes conformes, operador de Paneitz, funcionales bilineales difer-
enciales.
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1 Introduction

Using his quantized calculus, Connes [3] found a couple of conformal invariants on a four-
dimensional oriented compact Riemannian manifold M without boundary. The first one
is a bilinear differential functional of order 4, that we denote B4 acting on C∞(M). This
bilinear differential functional is symmetric B4(f, h) = B4(h, f), and conformally invariant
in the sense that B̂4(f, h) = e−4ηB4(f, h), for a conformal change of the metric ĝ = e2ηg.
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The second conformal invariant, P4, the Paneitz operator [8], can be derived derived from
B4 by the relation ∫

M
B4(f, h) dx =

∫

M
fP4(h) dx.

These two conformal invariants can be defined in any even-dimensional oriented compact
Riemannian manifold without boundary by the relations

Wres(k[F, f ][F, h]) =
∫

M
kBn(f, h) dx,

∫

M
Bn(f, h) dx =

∫

M
fPn(h) dx,

with k, f, h ∈ C∞(M). For details in the four-dimensional case see [3] and for the general
case see [12]. Here Wres is the non-commutative residue. The operator F is a pseudo-
differential operator of order 0 acting on the space of square integrable sections of middle
dimension forms on M.

In this paper, we use Ricci.m [7], a package to do tensor computations to compute the
conformal invariants B4 and P4 in the four-dimensional case, and the equivalent ones B6

and P6 in the six-dimensional conformally flat case. In detail we give a short introduction
on how to use Ricci.m to do the computations required in this work. Next, we present
our computation of B4 and we prove Theorem 3.2 which characterizes any formally self-
adjoint differential operator P with leading term ∆2 and with no zeroth-order term which
is furtermore conformal invariant as a constant multiple of the Paenitz operator. After
that, we present our computation of B6 in the conformally flat case and characterize in
Theorem 3.5 all the symmetric bilinear differential functionals that are conformally invari-
ant and that define a Hochschild 2-cocycle on the algebra C∞(M) for a six-dimensional
manifold M. At the end, we present Theorem 4.1 which characterizes all the differential
operators in dimension six that are of type GJMS [5] as explained in Section 4.

In this work, R represents Riemann tensor and the Ricci tensor is represented by
Rcij = Rk

ikj. The scalar curvature by Sc = Rci
i. We use J to denote the normalized

scalar curvature 2(n − 1)J = Sc in dimension n. If needed, we will “raise” and “lower”
indices without explicit mention for example, gmiR

i
jkl = Rmjkl. The relation between the

Weyl tensor and the Riemann tensor is given by

W i
jkl = Ri

jkl + PjkδK
i
l − PjlδK

i
k + Pi

lgjk − Pi
kgjl

where δK represents the Kronecker’s delta tensor. Last (n − 2)P = Rc−Jg.

2 Working in a conformal setting with Ricci.m

There are results supported on computations that are beyond reasonable hand manipu-
lations. Introductions are presented in [1] with spin geometry and conformally invariant
differential operators, and in [11] with gravitational field equations. Further examples are
present in [6] with tractors, and in [9] and [10] with noise kernel for scalars fields in the
Schwarzschild black hole and for thermal fields in flat space. This calculations require a
package for tensor calculus with the capability of handling indices, covariant derivatives,
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curvature identities, symmetries, dependence on an arbitrary dimension, etc., and a par-
ticular kind of philosophy. The idea is to play an interactive session with a computer
aiming to produce a desired result, not as the output of a program, but as the conclusion
of a series of procedures, each based on a decision of what sort of identities or properties
of the objects involved to use next. We use Ricci.m, a package prepared by J. M. Lee [7].
In what remains of this section we give a short presentation on how to use Ricci.m for
the computations ahead.

We choose to work with the convention on the Laplacian having positive spectrum. To
declare it in Ricci.m we must use

$LaplaceBeltramiConvention = PositiveSpectrum

The first step is to define the bundle we will be working on:

DefineBundle[tangent,n,g,i,j,k,MetricType->Riemannian,
RiemannConvention->FirstUp]

where g represents the Riemannian metric associated to the base manifold of dimension n
of the bundle tangent, and i,j,k are indices associated to the bundle.

To be able to work with a conformal metric we must explicitly define a new metric gz
which is conformal to the background metric g. To define the new metric we use

DefineTensor[gz,2,Symmetries -> Symmetric]
DefineRelation[gz,Exp[2*z*eta]*g]

The z keeps track of the order of the conformal deformation or variation. For example,
to compute the scalar curvature Sc in the new metric gz we use ScalarCurv[gz] which
after simplifications with BasisExpand and TensorSimplify produces

Sc(gz) = Sc(g)e−2zη − 2(n − 1)zη ; i
ie−2zη − (n − 2)(n − 1)z2η ; iη ;

ie−2zη. (1)

It is very common to write ĝ for gz = e2zηg, Ŝc for Sc(gz), and simply Sc for Sc(g).
In this way, the first order conformal variation of Sc is −2(n − 1)zη ; i

ie−2zη or simply
−2(n − 1)η ; i

ie−2η if the metric is conformally changed to e2ηg.

Before going any further is it important to make the following observation. If we set
a metric g in M and consider another metric ĝ conformally related to g by the relation
ĝ = e2zηg where η ∈ C∞(M) and z a constant, then the conformal variation of each
expression is a polynomial in z whose coefficients are expressions in the metric and the
conformal factor η (actually, this is an abuse of the language since the conformal factor
is e2zη). In this way, when studying conformal invariance, there is no need to study the
whole conformal deformation. It is enough to study the conformal deformation up to order
one in η as follows. The conformal deformation up to order one in η is given by d

dz

∣∣
z=0

.
If a natural tensor or a differential operator is invariant up to order one in η, i.e. if its
conformal deformation up to order one is equal to zero, then by integration it follows that
it is fully invariant, for details see [2].
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The next step to keep working with a conformal metric is to define its inverse Invgz.
For that we use:

DefineTensor[Invgz,2,Symmetries->Symmetric,Variance->Con]

DefineRelation[Invgz[U[i],U[j]],Exp[-2*z*eta]*g[U[i],U[j]]]

to declare it as a 2-contravariant symmetric tensor g−1 such that (g−1)ij = e−2zηgij and

DefineRule[gzInvgz,gz[L[i],L[j]]*Invgz[U[j],U[k]],Kronecker[[L[i],U[k]]]

to define its properties as an inverse of g.
To declare smooth functions we consider them as 0-tensors f and h. Once they are

declared using DefineTensor[f,0] and DefineTensor[h,0] we can use the new metric
to compute the conformal transformation of the different tensors we want to work with.
For example, the conformal transformation of

f ; ijh ;
ij = gii1gjj1f ; ijh ; i1j1

= g[U[i],U[i1]]*g[U[j],U[j1]]*f[][L[i],L[j]]*h[][L[i1],L[j1]]

is obtained with

Invgz[U[i],U[i1]]*Invgz[U[j],U[j1]]*Del[Del[f,Metric->gz],Metric->gz]
[L[i],L[j]]*Del[Del[h,Metric->gz],Metric->gz][L[i1],L[j1]]

3 Computing B4 and B6.

The bilinear differential form Bn(f, h) is natural in the sense it can be written as a universal
polynomial expression in the metric g, its inverse g−1, the connection ∇, and the curvature
R; using tensor products and contractions. Furthermore, by Lemma 3.2 [12], we know that
Bn(f, h) is a polynomial in the ingredients ∇αdf, ∇βdh, and ∇γR for multi-indices α, β,
and γ, with

2 degR +deg∇ = n, with deg∇ ≥ 2.

Here for derivatives we count all of the covariant derivatives on R, f, and h, as well as the
exterior derivatives, and any occurrence of W, Rc, P, Sc, or J is counted as an occurrence
of R.

In the particular case n = 4, degR can be 0 or 1, hence B4 can be written as

B4(f, h) = p4(df, dh) + pR,4(df, dh)

where pR,4(df, dh) is a trilinear form on R, df, and dh. In the six-dimensional case, degR ∈
{0, 1, 2} thus

B6(f, h) = p6(df, dh) + p6,1(df, dh) + p6,2(df, dh),

with p6,1 = p6,R + p6,R′ + p6,R′′ , and

1. p6,R(df, dh) is polynomial on ∇αdf, ∇βdh, and R,
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2. p6,R′(df, dh) is polynomial on ∇αdf, ∇βdh, and ∇R,

3. p6,R′′(df, dh) is polynomial on ∇αdf, ∇βdh, and ∇∇R, and

4. p6,2(df, dh) is polynomial on ∇αdf, ∇βdh, and RR.

The four-dimensional case was fully treated in [3], nevertheless we present our ap-
proach. By taking into consideration the symmetry of B4(f, h) we know

p4(df, dh) ∈ span
{
(f ; i

i
jh ;

j + h ; i
i
jf ;

j), f ; ijh ;
ij , f ; i

ih ; j
j
}
.

There are no terms in pR,4(df, dh) involving the Weyl tensor. Indeed, any term of the
form f ; ∗h ; ∗W∗∗∗∗ will force indices in W to repeat and hence to vanish since the Weyl
tensor is trace-free. In this way, the only terms to consider are those with a factor P or J.
That is to say

pR,4(f, h) ∈ span
{
f ; ih ;

iRjk
jk, f ; ih ; jR

i
k
jk

}
= span

{
f ; ih ;

iJ, f ; ih ; jP
ij

}
.

In particular, in the four-dimensional case, to determine B4(f, h) is enough to work in the
conformally flat case. Thus, in the four dimensional case, B4(f, h) is a linear combination
of the form:

A(f ; i
i
jh ;

j + h ; i
i
jf ;

j) + Bf ; ijh ;
ij + Cf ; i

ih ; j
j + Df ; ih ;

iJ + Ef ; ih ; jP
ij.

Its conformal variation, under a change of metric of the form ĝ = e2zηg with η a smooth
function on M, is given by:

(2C + B − 2A)zη ; i(f ; j
jh ;

i + f ;
ih ; j

j) + 2(A − B)zη ; i(f ;
i
jh ;

j + f ; jh ;
ij)

− Dzη ; i
if ; jh ;

j + (4A − E)zη ; ijf ;
ih ;

j

+ (2B − D − E/2)z2η ; iη ;
if ; jh ;

j + (2B − 8A + 4C + E)z2η ; iη ; jf ;
ih ;

j.

Hence to get rid of the variation we just need to consider B = A = 2C, E = 4A, and
D = 0. Also note how the expressions with a z2 factor vanish when the expressions with
a z factor vanish. In this way, by taking C = −1

B4(f, h) = −2(f ; i
i
jh ;

j + h ; i
i
jf ;

j) − 2f ; ijh ;
ij − f ; i

ih ; j
j − 8f ; ih ; jP

ij

= −2(f ; ij
jh ;

i + h ; ij
jf ;

i) − 2f ; ijh ;
ij − f ; i

ih ; j
j + 4f ; ih ;

iJ. (2)

By using the relations

f ; i
i = −∆f f ; ih ;

i = 〈df, dh〉 f ; ijh ;
ij = 〈∇(df),∇(dh)〉,

and
f ; ij

jh ;
i + h ; ij

jf ;
i = −∆〈df, dh〉 − 2〈∇(df),∇(dh)〉,

in the four-dimensional case, B4 is given by the following
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Theorem 3.1. For a four-dimensional oriented compact Riemanian manifold M without
boundary, any symmetric bilinear differential functional B acting on C∞(M) × C∞(M),
conformal invariant in the sense that B̂(f, h) = e−4ηB(f, h) for a conformal change of the
metric ĝ = e2ηg, and such that B(f, h) does not have linear terms on f or h is a constant
multiple of

B4(f, h) = 2∆(〈df , dh〉) − ∆(f)∆(h) + 2〈∇(df),∇(dh)〉 + 4〈df, dh〉J. (3)

We use ∇ to represent the covariant derivative and the Laplacian ∆ = −∇j∇j. Furthe-
more,

τ4(f0, f1, f2) :=
∫

M
f0B4(f, h) dx

defines a Hochschild 2-cocycle on the algebra of smooth functions on M.

The exclusion of linear terms on f or h in the statement is to avoid the presence
of multiples of fh|W |2. Compare with [3]. The cocycle property follows from an easy
computation. What we have determined is actually B4 up to a proportional factor. In [3],
Connes use this expression for B4 to obtain the Paneitz operator.

Theorem 3.2. Let M be a four-dimensional oriented compact Riemanian manifold with-
out boundary. Let P be any formally selfadjoint differential operator P with leading term
∆2 and with no zeroth-order term which is furtermore conformal invariant in the sense
that P̂ (f) = e−4ηP (f) for a conformal change of the metric ĝ = e2ηg. Then P is a constant
multiple of the Paenitz operator.

Proof. Stokes’ theorem applied to (2) leads to an expression for P4, indeed using the metric
to raise and lower indices and reordering covariant derivatives

∫

M
B4(f, h) dx =

∫

M

{
f ; i

i
j
j − 2f ; i

iJ + 2f ; iJ ;
i + 4f ; ijP

ij
}
h dx.

Because this equality holds for every f and every h in C∞(M) we obtain,

P4(f) = f ; i
i
j
j − 2f ; i

iJ + 4f ; ijP
ij + 2f ; iJ ;

i

= ∆2(f) + 2∆(f)J + 4〈∇df,P 〉 + 2〈df, dJ〉, (4)

the Paneitz operator.
Now let P be another formally selfadjoint differential operator of order 4 on the four-

dimensional manifold M such that P is of the form ∆2 plus lower order terms and with no
zeroth-order term. Define the symmetric bilinear differential functional B by the relation

B(f, h) := P (fh) − fP (h) − P (f)h.

If P̂ (f) = e−4ηP (f), for a conformal change of the metric ĝ = e2ηg then, the same holds
for B, that is B̂(f, h) = e−4ηB(f, h). Hence B must be a constant multiple of B4 above.
Now ∫

M
fP4(h) dx =

∫

M
B4(f, h) dx = c

∫

M
B(f, h) dx = c

∫

M
fP (h) dx
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where the relation holds for any smooth functions f and h on M. Hence P = cP4 and
we have determined as well any possible differential operator of such a kind in the four-
dimensional case up to a constant multiple.

In the 6-dimensional case, symmetry and conformal invariance are not enough to fully
described B6 as we will find terms like f ; ih ;

iWjklmW jklm and f ; ih ; jW
i
klmW jklm which

are symmetric on f and h, and conformally invariant. We will need to use the Hochschild
2-cocycle property of Wres(f0[F, f ][F, h]) on the algebra C∞(M) to determine some of the
components of B6. Even such a property will not suffice to completely describe B6 as we
will find terms that are conformally invariant and satisfy such a property (see (10)).

The list of terms we consider in the six-dimensional conformally flat case is as follows:

p6(df, dh) ∈ span
{
(f ; ih ; j

j
k
ki + h ; if ; j

j
k
ki), (f ; i

ih ; j
j
k
k + h ; i

if ; j
j
k
k),

(f ; ijh ;k
kij + h ; ijf ;k

kij), (f ; ijkh ;
ijk), (f ; i

i
jh ;k

kj)
}

p6,R(df, dh) ∈ span
{
(f ; ih ; j

ji + h ; if ; j
ji)J, (f ; i

ih ; j
j)J, (f ; ijh ;

ij)J,

(f ; ih ; k
k
j + h ; if ;k

k
j)Pij, (f ; ih ;

i
jk + h ; if ;

i
jk)Pjk,

(f ; ijh ;k
k + h ; ijf ;k

k)Pij , (f ; ijh ;
i
k)Pjk

}

Next, for p6,R′ we might consider

p6,R′ ∈ span
{
(f ; ih ; j

j + h ; if ; j
j)J ;

i, (f ; ih ;
i
j + h ; if ;

i
j)J ;

j,

(f ; ijh ; k + h ; ijf ;k)Pij
;
k, (f ; ijh ; k + h ; ijf ;k)Pik

;
j,

(f ; ijh ;
i + h ; ijf ;

i)Pj
k ;

k, (f ; ijh ;
i + h ; ijf ;

i)Pk
k

;
j
}
.

The relations

Pi
i = J, Pij ;

j = J ; i, Pij ; k = Pik ; j − Wiljk ;
l/(n − 3) (5)

imply that these terms are already considered in the conformally flat case and hence

p6,R′ ∈ span
{
(f ; ih ; j

j + h ; if ; j
j)J ;

i, (f ; ih ;
i
j + h ; if ;

i
j)J ;

j, (f ; ijh ; k + h ; ijf ;k)Pij
;
k
}
.

For p6,R′′ we might consider

span
{
f ; ih ;

iJ ; j
j , f ; ih ; jJ ;

ij, f ; ih ; jP
ij

; k
k, f ; ih ;

iPjk ;
jk,

(f ; ih ; j + h ; if ; j)Pik ;
jk, (f ; ih ; j + h ; if ; j)Pij

; k
k
}
.

The relation

Pij ; lk − Pij ;kl = Pj
m(glmPik − gkmPil − gilPkm + gikPlm + Wimkl)

+ Pi
m(glmPjk − gkmPjl − gjlPkm + gjkPlm + Wjmkl)

and (5) above imply
p6,R′′ ∈ span

{
f ; ih ;

iJ ; j
j , f ; ih ; jJ ;

ij
}
.
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Last,
p6,R2 ∈ span

{
f ; ih ;

iJ2, f ; ih ; jJPij, f ; ih ;
iPjkP

jk, f ; ih ; jP
i
kP

jk
}
.

In this way, we know B6(f, h) in the conformally flat case is a linear combination of up to
21 terms. We use Ricci.m to compute the proper coefficients, the result reads:

Theorem 3.3. In the 6-dimensional conformally flat case, an expression for B6 is

B6,confflat(f, h) = 2(f ; i
i
j
j
kh ;

k + h ; i
i
j
j
kf ;

k) + (f ; i
i
j
jh ; k

k + h ; i
i
j
jf ;k

k)

+ 4(f ; i
i
jkh ;

jk + h ; i
i
jkf ;

jk) + 4f ; i
i
jh ; k

kj + 8(f ; ijkh ;
ijk)/3

− 4(f ; i
i
jh ;

j + h ; i
i
jf ;

j)J − 4f ; i
ih ; j

jJ

+ 80(f ; ih ; j
j
k + h ; if ; j

j
k)Pik/3

+ 32(f ; ijkh ;
i + f ; ijkh ;

i)Pjk/3 + 64f ; ijh ;
ikPjk

+ 8(f ; ijh ;
i + h ; ijf ;

i)J ;
j + 32(f ; ijh ;k + h ; ijf ;k)Pij

;
k

+ 16f ; ih ; jJ ;
ij

− 32f ; ih ; jJPij − 80f ; ih ;
iPjkP

jk/3 + (608f ; ih ; jP
i
kP

jk)/3. (6)

It is not difficult to verify that the above expression for B6 in the conformally flat case,
as a sum of explicitely symmetric terms is:

B6,confflat(f, h)
= 2(〈d∆2f, dh〉 + 〈d∆2h, df〉) − (∆2f∆h + ∆2h∆f)
−4(〈∇d∆f,∇dh〉 + 〈∇d∆h,∇df〉) + 4〈d∆f, d∆h〉 + 8〈∇2df,∇2dh〉/3
+4(〈d∆f, dh〉 + 〈df, d∆h〉)J − 4∆f∆hJ
−80〈df ⊗ d∆h + dh ⊗ d∆f,P〉/3 + 32〈∇2df, dh ⊗ P〉
+〈∇2dh, df ⊗ P〉/3 + 64〈∇d〈df , dh〉,P〉
−32(〈∇2df, dh ⊗ P〉 + 〈∇2dh, df ⊗ P〉)
+8(〈∇df, dh ⊗ dJ〉 + 〈∇dh, df ⊗ dJ〉)
+32(〈∇df ⊗ dh + ∇dh ⊗ df,∇ V 〉) + 16〈df ⊗ dh,∇dJ〉
−32〈df ⊗ dh,P〉J − 80〈df, dh〉〈P,P〉/3 + (608〈df ⊗ dh, V 2〉)/3.

(7)

Here we are using 〈df ⊗ dh, V 2〉 to denote f ; ih ; jP
i
kP

jk.
Leaving for an instant the conformally flat case, in the general conformally curved

case, the conformal variation of B6(f, h) in (6), up to order one in η is given by

−64zη ; i

(
f ; jkh ; l+f ; lh ;kj

)
W ijkl/3−32zη ; ijf ;kh ; lW

iljk+160z2η ; iη ; jf ;kh ; lW
ikjl/3. (8)

which vanishes in the conformally flat case, meaning that our expression is conformally
invariant inside the conformally flat class of metrics on M. In the general conformally
curved case, this variation will be useful in finding the extra terms we are missing, that is
to say, those terms that vanish in the conformally flat case.

If we define using (6) the trilinear form on C∞(M)

τ(f0, f1, f2) :=
∫

M
f0B6(f1, f2) dx
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then

(bτ)(f0, f1, f2, f3)

=
∫

M
f0

(
32f1 ; if2 ; jf3 ;kW

ik
l
j

;
l + 32

(
f1 ; ijf3 ; l − f1 ; lf3 ; ij

)
f2 ;kW

ikjl/3
)

dx (9)

which vanishes in the conformally flat case meaning that τ is a Hochschild 2-cocycle on
the algebra of smooth functions in the conformally flat case.

We do not restrict ourselves anymore to the conformally flat case. Our objective now
is to identify those terms that we must add to p6,R, p6,R′ , p6,R′′ , and p6,2 (in (6)) to obtain
the expression for B6 in the general conformally curved case. In particular, we are looking
for terms having the Weyl tensor, or its covariant derivatives as factors.

The first set of terms to be added will complete the expression for p6,R. In this case
there is just one possibility which is f ; ijh ;klW

ikjl. Any other possibility is ruled out by the
Bianchi identities. To complete the expression for p6,R′ we only need to consider (f ; ijh ; k+
h ; ijf ;k)W i

l
jk

;
l. The only term to complete the expression for p6,R′′ is f ; ih ; jW

i
k
j
l ;

kl,
symmetric on f and h. For p6,2 we consider at this time only f ; ih ; jPklW

ikjl. It happens
that the other possible terms

f ; ih ;
iWjklmW jklm and f ; ih ; jW

i
klmW jklm. (10)

are conformally invariant.
Up to this point, what we must add to B6,conf. flat is a linear combination of the form

Af ; ijh ; klW
ikjl + B(f ; ijh ;k + h ; ijf ;k)W i

l
jk

;
l + Cf ; ih ; jW

i
k
j
l ;

kl + Df ; ih ; jPklW
ikjl.

Its conformal variation up to order one in η is given by

(2A − 3B)zη ; i(f ; jkh ; l + h ; jkf ; l)W ijkl + (3C − D)zη ; ijf ;kh ; lW
iljk

− (B + 2C)zη ; if ; jh ;k(W ijk
l + W ikj

l) ;
l − (2A − 6B − 3C − D)z2η ; iη ; jf ;kh ; lW

ikjl.

By comparing it with (8), we deduce the conditions

B + 2C = 0, 2A − 3B = 64/3, 3C − D = 32, (11)

which means, conformally invariance and symmetry are not enough to find the right values
for all the constants. So far, the term to be added to B6(f, h) is given by

(32/3 − 3C)f ; ijh ;klW
ikjl − 2C(f ; ijh ;k + h ; ijf ;k)W i

l
jk

;
l + Cf ; ih ; jW

i
k
j
l ;

kl

+ 3Cf ; ih ; jPklW
ikjl + Ef ; ih ;

iWjklmW jklm + Ff ; ih ; jW
i
klmW jklm (12)

where the last two terms come from (10).
In the 4-dimensional case, the Hochschild 2-cocycle property of Wres(f0[F, f1][F, f2])

was used merely to make sure the constants found had the right values. In the 6-
dimensional case, as we shall see, this property will play a more important role in the
non-conformally flat case. Nevertheless, the full description of B6 escapes even these
properties, requiring some more information to be used.
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Proposition 3.4. The trilinear form

τ ′(f0, f1, f2) :=∫

M
f0

{
f1 ; if2 ; j

(
CW i

k
j
l ;

kl + DPklW
ikjl + FW i

klmW jklm
)

+ Ef1 ; if2 ;
iWjklmW jklm

}
d x

defines a Hochschild 2-cocycle on the algebra C∞(M) for any value of the constants C, D,
E, and F, that is, it satisfies (bτ ′)(f0, f1, f2, f3) = 0 for any fi ∈ C∞(M).

On the other hand, if we define

τ ′′(f0, f1, f2) :=
∫

M
f0

{
Af1 ; ijf2 ; klW

ikjl + B(f1 ; ijf2 ;k + f2 ; ijf1 ; k)W
i
l
jk

;
l
}

d x

then

(bτ ′′)(f0, f1, f2, f3) = (13)∫

M
f0

(
3Bf1 ; if2 ; jf3 ; kW

ik
l
j

;
l + 2A(f1 ; ijf3 ; l − f1 ; lf3 ; ij)f2 ; kW

ikjl
)

dx.

To have that
∫
M f0B6(f1, f2) dx is a Hochschild 2-cocycle on C∞(M) we need (9)+(13) =

0, for any fi ∈ C∞(M). Thus 3B = −32 and 3A = −16, which agree with (11). We must
also have 3C = 16 and D = −16. Hence using (6), (10), and (12) we conclude the following
expression for B6(f, h) :

B6(f, h) = B6,confflat(f, h) − 16f ; ijh ; klW
ikjl/3 − 32(f ; ijh ; k + h ; ijf ;k)W i

l
jk

;
l/3

+ 16f ; ih ; jW
i
k
j
l ;

kl/3 + 16f ; ih ; jPklW
ikjl

+ Ef ; ih ;
iWjklmW jklm + Ff ; ih ; jW

i
klmW jklm, (14)

where the last two terms are the needed ones to fully complete the expression for p6,2 as in
(10). Here it is important to keep in mind that one may have many different expressions
for the same object, furthermore different expressions that yield the same invariant on
conformally flat structures, may represent different invariants in more curved settings. In
this particular case, any value of E or F will yield the same invariant in the conformally
flat case.

Theorem 3.5. The expression (14) gives a family of bilinear differential functionals acting
on C∞(M)×C∞(M) (without order zero terms) of order 6 associated to a six-dimensional
compact oriented Riemannian manifold M without boundary. Each of these differential
functionals is symmetric on f and h, conformally invariant in the sense that B̂6(f, h) =
e−6ηB6(f, h), for a conformal change of the metric ĝ = e2ηg, and defines a Hochschild
2-cocycle on the algebra C∞(M) by the relation τ(f0, f1, f2) =

∫
M f0B6(f1, f2) dx.

Finding the right values of E and F to obtain in the 6-dimensional conformally curved
case the unique bilinear differential functional satisfying the relation

Wres(f0[F, f1][F, f2]) =
∫

M
f0B6(f1, f2) dx

will be the topic of a different paper.
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4 The analogue of the Paneitz operator in six dimensions

Stokes’ theorem applied to (14) leads to the expression

Wres([F, f ][F, h]) =
∫

M
P6(f)h dx

(see [12] for details). Because this equality holds for every f and every h in C∞(M)
we obtain an operator P6 constructed in a canonical way from the Wodzicki residue
Wres([F, f ][F, h]). In the flat case we obtain simply

P6flat(f) = 2∆3(f)/3 = −2f ; i
i
j
j
k
k/3.

In the conformally flat case we have terms with ∇aJ∇bV as a factor:

P6conf. flat(f) = P6 flat(f)

+ 4h ; i
i
j
jJ − 32/3h ; i

i
jkP

jk − 8/3h ; i
i
jJ ;

j − 32/3h ; ijkP
ij

;
k

+ h ; i
i(4/3J ; j

j − 16/3J2 − 32/3PjkP
jk)

+ h ; ij(64/3J ;
ij + 64/3JPij + 64Pi

kP
jk − 32Pij

; k
k)

+ h ; i(32/3JJ ;
i − 8/3J ; j

ji − 128/3J ; jP
ij − 128/3Pj

kPij
;
k).

In the general conformally curved case, we also those terms with a Weyl tensor as a factor:

P6(f) = P6 conf. flat(f) (15)

− 16/3h ; ijklW
iljk − 16h ; ijkW

ikj
l ;

l − Eh ; i
iWjklmW jklm

+ h ; ij(64/9W i
k
j
l ;

kl − (8/3 + F )W i
klmW jklm − 80/3PklW

ikjl)

+ h ; i(80/9PjkW
ijk

l ;
l − 104/3Pjk ; lW

ijk − 2EWjklmW jklm
;
i

− 2(44 + 3F )/3W i
jklW

jkl
m ;

m + 52/3WjklmW ijkl
;
m + (34 + 3F )WjklmW ijlm

;
k).

The GJMS operators [5] are invariant operators on conformal densities

P2k : E [−n/2 + k] → E [−n/2 − k]

with principal parts ∆k, unless the dimension is even and 2k > n. If n is even, the n-th
order operator

Pn : E [0] → E [−n]

is called critical GJMS operator. As noted in [5], E [0] = C∞(M) and E [−n] is the bundle
of volume densities on M. In the 4-dimensional case, the Paneitz operator coincide with
the critical GJMS operator. The GJMS operators P2k, of Graham-Jenne-Mason-Sparling
[5] by construction have the following properties.

i. P2k exists for all k if n is odd, and if n is even exists for 1 ≤ k ≤ n/2.

ii. P2k is formally self-adjoint.
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iii. P2k is conformally invariant in the sense that

P̂2k = e−(n/2+k)ηP2ke(n/2−k)η

for conformally related metrics ĝ = e2ηg.

iv. P2k has a polynomial expression in ∇ and R in which all coefficients are rational in
the dimension n.

v. P2k = ∆k + lot. (Here and below, lot =“lower order terms”.)

vi. P2k has the form
δS2kd +

(n

2
− k

)
Q2k,

where Q2k is a local scalar invariant, and S2k is an operator on 1-forms of the form

(dδ)k−1 + lot or ∆k−1 + lot .

In this last expression, d and δ are the usual de Rham operators and ∆ is the form
Laplacian dδ + δd. The original work [5] uses the “ambient metric construction” of [4] to
prove their existence.

Theorem 4.1. Any polynomial P6 of the form (15) is conformally invariant and a critical
GJMS operator (in the sense that it satisfies the properties i. to vi. above) in a six
dimensional, compact, conformal manifold without boundary.

A computation verifies the following particular six dimensional case of Theorem 1.2.vi.
of [12]

Proposition 4.2. The functional B6 and the polynomial P6 are related by

P6(fh) = P6(f)h + fP6(h) − 2B6(f, h).

This relation opens the gate to study the relation between products of GJMS-operators
of order different than the critical and bilinear differential functionals. Relation that we
will explore in future work.
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