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Abstract

In this work we consider a class of polytopes of third order square
matrices, studied early. We obtain a condition to guarantee Hurwitz
stability of each of elements of the polytope. This condition is more
simples than one obtained before. Taking into account that to the
considered set of matrices correspond a family of perturbed sys-
tems of differential equations, we study the relationship between the
stability condition and the magnitude of the class of perturbations
considered for this family.

Resumen

En el presente trabajo consideramos una clase de politopos de
matrices cuadradas de tercer orden, estudiada anteriormente. Obten-
emos una condición para garantizar la estabilidad, según Hurwitz, de
cada uno de los elementos del politopo. Dicha condición es más sim-
ple que la obtenida con anterioridad. Teniendo en cuenta que al con-
junto considerado de matrices corresponde una familia de ecuaciones
diferenciales perturbada, estudiamos la relación entre la condición de
estabilidad y la magnitud de la clase de perturbaciones considerada
para esta familia.

1 Introduction

In a previous article [7], we characterize Hurwitz–stability of the third
order family of matrices, i.e., we study the stability properties of a convex
and symmetric polytope of the time–invariant matrices. This set depends
on a real positive parameter r, which variation represents a contraction
or an expansion of the set. Besides, the considered set of matrices is an
extension of the class of sets considered by Nicado & Hing (1998) in [5].

In this work, in the first section, we simplify the expressions for the
calculation of the “extreme” value r now considering unused properties of
the set of matrices, specifically the fact that the matrices which determine
the polytope have only one linear independent row (or column). In the
second section we analyze the relationship between optimum value of the
parameter r and the magnitude of the perturbation. To the considered
set corresponds a family of the perturbed systems of third order linear
differential equations.
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2 Formulation of the problem and calculation of

the number r∗(A, (Bi)i∈1,4)

Let be A ∈ R3×3 a Hurwitz–stable matrix, i.e., it has all their eigenvalues
with negative real part; let be Bi ∈ R3×3, i = 1, 4, matrices not all nulls
and of the form Bi = b(v(i))T , i = 1, 4, where b ∈ R3×1 is a constant vector,
and the vectors v(i) ∈ R3×1, i = 1, 4, have the following coordinates:

(v(1))T = (v0
1 , v

0
2 , v

0
3)

(v(2))T = (−v0
1 , v

0
2 , v

0
3)

(v(3))T = (v0
1 ,−v0

2 , v
0
3)

(v(4))T = (v0
1 , v

0
2 ,−v0

3),

where v0
q , q = 1, 2, 3, are given values.

We notate that for the matrices Bi ∈ R3×3, i = 1, 4, it holds that
rk(Bi) = 1 , i = 1, 4, where rk(M) denotes the rank of matrix M .

For each number r > 0 we consider the convex and symmetric poly-
tope depending on the parameter r and which is formed by time indepen-
dent matrices: ℵ(A, (Bi)i∈N , r) = conv {A ± rBi, i ∈ N}. The notation
conv{·} means that the set is convex.

In general, when N matrices are considered, for the family
ℵ(A, (Bi)i∈N , r) we can formulate the problem as: Find the values of the
r > 0 which guarantee the stability of the convex and symmetric polytope
ℵ(A, (Bi)i∈N , r); in other words, find the values of the parameter r > 0, so
that each matrix M ∈ ℵ(A, (Bi)i∈N , r) is stable. In this work we consider
the particular case, when N = 4 and the four matrices Bi ∈ R3×3, i = 1, 4,
have rank equal to one.

In [7] we define the number r∗(A, (Bi)i∈1,4).

Definition 1 (Vázquez (2002)) Let A ∈ R3×3 be a Hurwitz–stable ma-
trix and Bi ∈ R3×3, i = 1, 4, matrices no all null, then

r∗(A, (Bi)i∈1,4) = inf
{
r > 0/ℵ(A, (Bi)i∈1,4, r)

contains at least one non stable matrix.

Evidently, if we determine the number r∗(A, (Bi)i∈1,4), the stated
problem will be solved, because the family of matrices ℵ(A, (Bi)i∈1,4, r) is
stable if and only if r < r∗(A, (Bi)i∈1,4).
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We apply the Routh–Hurwitz theorem (see, for example, [4]) to the
family of matrices ℵ(A, (Bi)i∈1,4, r) in order to study the stability proper-
ties of this family. With that purpose we write the family ℵ(A, (Bi)i∈1,4, r)
in an equivalent form, which facilitate the application of the Routh–
Hurwitz theorem. From this action we obtain three extreme problems
and the following theorem.

Theorem 2 (Vázquez (2002)) Let A ∈ R3×3 be a Hurwitz–stable ma-
trix, let Bi ∈ R3×3, i = 1, 4, be the matrices defined above, then the time
invariant polytope M(r) will be stable if and only if

r < min
{

π1(A, (Bi)i∈1,4), π2(A, (Bi)i∈1,4), π3(A, (Bi)i∈1,4)
}

= r∗(A, (Bi)i∈1,4),

where the numbers π1(A, (Bi)i∈1,4), π2(A, (Bi)i∈1,4) and π3(A, (Bi)i∈1,4)
are, respectively, the solutions of the following extreme problems:

i)
∑8

j=1 γj −→ min

s.t. tr(A) + ξT β = 0, γj ≥ 0, j = 1, 8

ii)
∑8

j=1 γj −→ min

s.t. detA + ρT β = 0, γj ≥ 0, j = 1, 8

iii)
∑8

j=1 γj −→ min

s.t. g + 〈χ, β〉 − βT ηξT β = 0, γj ≥ 0, j = 1, 8,

where g = detA − tr(A)
∑3

p=1(App).

Proof. For the proof see Vázquez (2002).

Remark 1 In [7] we define the polytope M(r) as follows: With the matri-
ces A ∈ R3×3 and Bi ∈ R3×3, i = 1, 4, we form the matrices
M2i = A−rBi; M2i−1 = A+rBi; i = 1, 4. Now we have the family M(r) =
conv

{
Mj(r), j = 1, 8

}
. Now, it is clear that M(r) ≡ ℵ(A, (Bi)i∈1,4, r).

Lemma 3 Let A ∈ R3×3 and Bi ∈ R3×3, i = 1, 4 matrices that satisfy
the conditions of the theorem 2, then:

π1(A, (Bi)i∈1,4) =
−trA∣∣b1v

0
1

∣∣ , π2(A, (Bi)i∈1,4) =
−detA∣∣$1v

0
1

∣∣ +
∣∣$2v

0
2

∣∣ +
∣∣$3v

0
3

∣∣

where

$1 = b1

∣∣∣∣
a22 a23

a32 a33

∣∣∣∣ ,$2 = b1

∣∣∣∣
a21 a23

a31 a33

∣∣∣∣ ,$3 = b1

∣∣∣∣
a21 a22

a31 a32

∣∣∣∣ .
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Proof. Evidently, problems i) and ii) are linear programming problems,
so their solutions are achieved on the vertex A ± rBi , i = 1, 4, of the
polytope M(r). This is equivalent to find the least positive root of the
algebraic equations: tr(A)±r〈b, ν(i)〉 = 0, det(A)±r

〈
$, ν(i)

〉
= 0, i = 1, 4,

i.e.,

π1(A, (Bi)i∈1,4) = inf
{

r > 0/tr(A) + r
∣∣∣〈b, ν(i)〉

∣∣∣ = 0 for some i = 1, 4
}

,

π2(A, (Bi)i∈1,4) = inf
{
r > 0/det(A) + r

∣∣〈$, ν(i)〉
∣∣ = 0 for some i = 1, 4

}
,

and the infimum is achieved for the greatest values of
∣∣〈b, ν(i)〉

∣∣ and∣∣〈$, ν(i)〉
∣∣ respectively, thus we obtain directly the statement of the lemma.

Lemma 4 Let be A ∈ R3×3 and Bi ∈ R3×3, i = 1, 4 matrices that satisfy
the conditions of the theorem 2, then π3(A, (Bi)i∈1,4) = k∗U , where U
is the sum of the coordinates of the vector which is the solution of the
following linear programming problem:





∑8
j=1 uj −→ min

s.t. u1 + 1
16ξ1

≥ 0, u2 + 1
16ξ1

≥ 0
u3 + 1

16ξ1
≥ 0, u4 + 1

16ξ1
≥ 0

u5 + 1
16ξ1

≥ 0, u6 + 1
16ξ1

≥ 0
u7 + 1

16ξ1
≥ 0, u8 + 1

16ξ1
≥ 0

u1 − u2 − u3 + u4 + u5 − u6 + u7 − u8 = 0,

and k∗ is the root of least absolute value of the equation Φ(k) = 0, where

Φ(k) = − η1

4ξ1

k2 +
χ1

2ξ1

k + g −
[
(η1 + η2 + η3)(u1 − u2) + (−η1 + η2 + η3)(u3 − u4)

+ (η1 − η2 + η3)(u5 − u6) + +(η1 + η2 + η3)(u7 − u8)
|k|k
2

]

+
[
(χ1 + χ2 + χ3)(u1 − u2) + (−χ1 + χ2 + χ3)(u3 − u4).

+(χ1 − χ2 + χ3)(u5 − u6) + (χ1 + χ2 − χ3)(u7 − u8)
]
|k|,

ξi, ηi, χi, i = 1, 2, 3, are the coordinates of the vectors ξT , ηT , χT respec-
tively, defined in Vázquez (2002).
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Proof. The proof of the lemma follows the same way of proof developed
in [7], but now we consider some simplifications that can be done by the
fact that matrices Bi ∈ R3×3, i = 1, 4, have rank one.

Remark 2 In [7] were obtained the expressions for the calculation of the
numbers π1(A, (Bi)i∈1,4), π2(A, (Bi)i∈1,4) and π3(A, (Bi)i∈1,4). Now these
expressions are more simple and we may see this fact by direct comparison.

Next we show some examples and calculate the number r∗(A, (Bi)i∈1,4)
considering the same perturbation matrices Bi ∈ R3×3, i = 1, 4, for all
cases.

Example 1

A =



−1 −1 1
3 −1 3
−2 1 −4


 , b =




1
0
0


 , ν0 =



−1
2
1


 .

π1(A, (Bi)i∈1,4) = 6, π2(A, (Bi)i∈1,4) = 0.42857 and π3(A, (Bi)i∈1,4) = 2,
then r∗(A, (Bi)i∈1,4) = 0.42857.

Example 2

A =



−20 48 −1
2 −10 1
1 20 −4


 , b =




1
0
0


 , ν0 =



−1
2
1


 .

π1(A, (Bi)i∈1,4) = 34, π2(A, (Bi)i∈1,4) = 0.20455 and π3(A, (Bi)i∈1,4) =
8.80305, then r∗(A, (Bi)i∈1,4) = 0.20455.

Example 3

A =



−20 1 −1
1 −10 1
2 3 −40


 , b =




1
0
0


 , ν0 =



−1
2
1


 .

π1(A, (Bi)i∈1,4) = 70 , π2(A, (Bi)i∈1,4) = 15.7163 and π3(A, (Bi)i∈1,4) =
23.8605, then r∗(A, (Bi)i∈1,4) = 15.7163.
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3 Relationship between the number r∗(A, (Bi)i∈1,4)

and the magnitude of the perturbation

Let us consider the system of differential equations

.
x = (A + P )x,

where A ∈ kn×n is stable and P ∈ kn×n belongs to a certain class of
perturbations; k = R or k = C. If the matrix P is the null matrix, then
we have a stable system of ordinary differential equations, because we are
considering that the matrix A has all eigenvalues with negative real part.

In this section we find out a relationship between the number
r∗(A, (Bi)i∈1,4) and the magnitude of the perturbation defined by the set
considered in the first section.

Definition 5 For the considered perturbation, we define its magnitude as
m = max

{
‖Bi‖, i = 1, 4

}
, where ‖ · ‖ is any norm defined for matrices.

The used norms in order to analyze the magnitude of the perturbations
are the usual ones for matrices:

Infinite Norm, ‖M‖∞ = maxi=1,n

∑N
j=1 |ai,j|.

Unit Norm, ‖M‖1 = maxj=1,n,
∑N

i=1 |ai,j|.

Frobenius Norm, ‖M‖fro = 2

√∑N
i=1

∑N
j=1 a2

i,j.

In the next lemma we show that the magnitude of the considered
perturbation is precisely the norm of any of matrices Bi ∈ R3×3, i = 1, 4.

Lemma 6 Let be Bi ∈ R3×3, i = 1, 4, the matrices defined in the first
section, then the magnitude of the perturbation defined by these matrices
is expressed by the equalities:

m∞ = |b1v
0
1| + |b1v

0
2 | + |b1v

0
3 |,

m1 = max
{
|b1v

0
1 |, |b1v

0
2 |, |b1v

0
3 |

}
,

mfro = 2

√
(b1v0

1)2 + (b1v0
2)2 + (b1v0

3)2,

when the infinite norm, the unit norm or the Frobenius norm are consid-
ered respectively.
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Proof. The matrices Bi ∈ R3×3, i = 1, 4, are of rank one, then they
may be transformed to a step form. The obtained matrices will have only
one not null row (or column). Without loss of generality, let consider
that the transformed matrices have not null only the first row. By direct
calculation of the magnitude of the perturbation, using for example, the
infinite norm, we obtain: m∞ = max{‖Bi‖, i = 1, 4}, then will be

‖Bk(k=1,4)‖∞ = max
i=1,3

3∑

j−1

|b(k)
ij |.

From these expressions follow

‖Bk(k=1,4)‖∞ = max{|b(k)
11 | + |b(k)

12 | + |b(k)
13 |}.

By substitution in formulae for m∞ we have

m∞ = max
k=1,4

{max{|b(k)
11 | + |b(k)

12 | + |b(k)
13 |}},

that can be written as

m∞ = max
k=1,4

{|b(k)
11 | + |b(k)

12 | + |b(k)
13 |}.

But the values b1j , j = 1, 3 are different only by the sign for each k = 1, 4,
then their absolute values will be equals and the sum will be the same for
all k , therefore m∞ = |b11|+ |b12|+ |b13|, i.e., m∞ = |b1v

0
1 |+ |b1v

0
2 |+ |b1v

0
3 |.

In the same way we can proof statement for the other norms.

Example 4 Determination of the magnitude of the perturbation.
Taking the same perturbation considered in Example 1, where

b =




1
0
0


 , ν0 =



−1
2
1


 ,

we obtain the results nthat appear in Table 1.
We observe that the magnitude of the perturbation can be calculated

taking into account any of the matrices Bi ∈ R3×3, i = 1, 4.

Example 5 In this case we show how the magnitude of the perturbation
affects the number r∗(A, (Bi)i∈1,4).
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B1 B2 B3 B4

m∞ 4 4 4 4
m1 2 2 2 2

mfro 2.4495 2.4495 2.4495 2.4495

Table 1: Norms of the perturbation for different matrix norms in example
4.

We take the matrix

A =



−1 −1 1
3 −1 3
−2 1 −4




of Example 1, and the respective perturbation for which r∗ = 0.42857 and
‖Bi‖ = 0.24495. In order to find the magnitude of the perturbation we use
the Frobenius norm. Varying the magnitude of the perturbation we obtain:

Figure 1: Relationship bettween the norm of the disturbance (horizontal
axis) and the the number r∗ (vertical axis), using the Frobenius matrix
norm.

We see in Figure 1 that the number r∗(A, (Bi)i∈1,4) decreases when the
magnitude of the perturbation increases.

In order to have an idea about the behavior of the stability properties
for the studied polytope, we can do numerical tests for the variation of
the system stability when the magnitude of the perturbation changes for
r < r∗(A, (Bi)i∈1,4) fixed. Now we present a pair of examples in which we
use the vectors

b =




1
0
0


 and ν0 =



−1
2
1


 .
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In order to varying the perturbation norm, we change the first coordinate
of the vector ν0.

Example 6 For the matrix A =



−1 −1 1
3 −1 3
−2 1 −4


, r∗(A, (Bi)i∈1,4) =

0.42857. Taking r = 0.428 follow results presented in Table 2.

‖B‖∞ ‖B‖1 ‖B‖fro Greatest eigenvalue Stability

4.1 2 2.492 0.0049988 Not stable
4.019 2 2.4573 0.000018572 Not stable
4.018 2 2.4569 -0.000041636 Stable
4.005 2 2.4515 -0.00082157 Stable
4 2 2.4495 -0.0011202 Stable
3.95 2 2.4295 -0.0040651 Stable
3.8 2 2.3749 -0.012471 Stable

Table 2: Performance of the stability of the polytope in Example 6.

Figure 2: Relationship between the magnitude of the disturbance (hori-
zontal axis) and the largest eigenvalue of the perturbation (vertical axis)
in Example 6.

Example 7 For the matrix A =



−20 1 −1
1 −10 1
2 3 −40


, r∗(A, (Bi)i∈1,4) =

15.7163. Taking r = 15.715 follow results presented in table 3.

In the Tables and Figures 2 and 3 we observe that, for the given
arbitrary stable matrix A ∈ R3×3 and matrices Bi ∈ R3×3, i = 1, 4, and



stability of perturbed systems of differential equations 23

‖B‖∞ ‖B‖1 ‖B‖fro Greatest eigenvalue Stability

4.1 2 2.492 1.1677 Not stable
4.05 2 2.4703 0.5752 Not stable
4.0002 2 2.4496 0.011065 Not stable
4.0001 2 2.44953 -0.000029336 Stable
4 2 2.4495 -0.0011651 Stable
3.95 2 2.4295 -0.56003 Stable
3.8 2 2.3749 -2.1182 Stable

Table 3: Performance of the stability of the polytope in Example 7.

Figure 3: Relationship between the magnitude of the disturbance (hori-
zontal axis) and the largest eigenvalue of the perturbation (vertical axis)
in Example 7.

perturbation with considered characteristics, the number r∗(A, (Bi)i∈1,4)
is the stability radius (see, for example, Hinrichsen & Pritchard (1988),
[2]) for the polytope defined by those matrices. Taking a fixed positive
number r, so that r < r∗(A, (Bi)i∈1,4), and varying the perturbation norm,
we see that the stability of the polytope is conserved for small increases
of the perturbation norm, i.e., taking the number r, so that r + ε = r∗,
we can take a perturbation norm ‖Bi‖∗, so that ‖Bi‖∗− δ = ‖Bi‖ and the
polytope conserves the stability.
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4 Conclusion

In this work we simplify the method presented in [7] for the calculation
of the number r∗(A, (Bi)i∈1,4), which characterizes the stability proper-
ties of the studied polytope. Also we calculate the norm of the consid-
ered perturbation and we determine the relationship between the numbers
r∗(A, (Bi)i∈1,4) and m‖.‖. The numerical tests shown that the behavior
of the polytope stability, with r < r∗(A, (Bi)i∈1,4) fixed, is the expected
one respect to the variation of the magnitude of the perturbation. So, we
think in the possibility to extend the study of the stability properties of
the considered polytope to the linear time depending case. In the exam-
ples 1, 2 and 3, we see that the equality r∗(A, (Bi)i∈1,4) = π2(A, (Bi)i∈1,4)
holds. Is it general for the considered perturbation?
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