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Abstract

The “Square-Wave Method” (SWM) presented here is a new method for the system-
atic analysis of signals – either locally or globally – depending on only one variable
(time). The SWM is based on a technique (previously described elsewhere) for the
representation of this type of signals using a sum of trains of square waves.

The SWM is applied here to several analytically characterized signals and to an
audio signal.

Keywords: signal analysis, trains of square waves, functions of time, representation of
functions

Resumen

Se presenta un nuevo método —el “Método de ondas cuadradas”— para el análisis
sistemático —tanto de carácter local como de carácter global— de señales dependientes
de una sola variable: el tiempo. Este método está basado en una técnica previamente
descripta para la representación de señales de dicho tipo mediante una suma de trenes
de ondas cuadradas.

El método se ha aplicado a varias señales caracterizadas anaĺıticamente y a una
señal de audio.
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∗Escuela de Informática, Universidad Nacional, Heredia, Costa Rica. E-Mail: oskliar@racsa.co.cr
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1 Introduction

The objective of this paper is to present a new method for the systematic analysis of signals,
either locally or globally, depending on only one variable – time. Given the significant role
of square waves in this method, it will be referred to here as the “Square-Wave Method”
(SWM).

The technique for the representation of signals on which the SWM is based cannot
be considered a particular case of the representation of signals with the Fourier series or
any other series of orthogonal functions. The trains of square waves whose sum is an
approximation of a signal characterized in a certain interval are not elements belonging to
a set of orthogonal functions in that interval.

What is the state of the art regarding the SWM, the topic discussed in this article?
Extremely incipient. Through this paper the intention is to describe the new method
sufficiently clearly and precisely to allow any reader interested in applying it to do so.

In view of the fact that the SWM is being presented here, it is not possible, to the
authors’ best knowledge, to locate references concerning that method. (Reference [2]
concerns a technique which is the basis for the SWM, and a brief review of that technique
is provided in section 2 below.)

It is not the objective of this article to make a comparative analysis between this new
method and Fourier’s classic method. Therefore, although a vast amount of technical
literature is available on topics such as Fourier series, the Fourier transform, the Fourier
fast transform and wavelets, it is not pertinent to include references to them here.

2 Brief review of a previously published technique for the

representation of signals, as a basis for the SWM

To facilitate the comprehension of this article for those who are not familiar with the
technique for the representation of functions presented in [2], its main features will be
described in this section.

For the purposes of this paper, the unit of time – such as seconds (s), milliseconds
(ms) – will not be specified in the sections on the treatment of analytically characterized
signals. Thus the value of a given interval of time ∆t will be specified as ∆t = 3. (It is
implicit here that we are dealing with 3 time units.) However, in section 5, regarding the
treatment of a signal which is not characterized analytically but rather generated by a
physical process, the unit of time is indicated.

Let the following function of time f(t) be characterized in the interval 0 ≤ t < 3.

f(t) =











4 if 0 ≤ t < 1

−5 if 1 ≤ t < 2

7 if 2 ≤ t < 3

(1)

In the intervals in which this function is continuous, it can be represented by the sum
of three trains of square waves that will be called S1, S2 and S3. T1 (the period of S1)
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is equal to 6. (That is,
T1

2
is equal to the lapse of time for which the function has been

characterized.) T2 (the period of S2) is equal to 4, and T3 (the period of S3) is equal to
2. To determine the amplitudes of S1, S2 and S3, the following system of linear algebraic
equations has been solved:

A1 + A2 + A3 = 4

A1 + A2 − A3 = −5 (2)

A1 − A2 + A3 = 7

|A1|, |A2| and |A3| are the amplitudes of S1, S2 and S3, respectively. If this system of
equations is solved, the following values are obtained for the unknowns:

A1 = 1; A2 = −
3

2
and A3 =

9

2
(3)

Trains S1, S2 and S3 of square waves are shown below in figure 1, in the interval
0 ≤ t < 12.

Upon adding S1, S2 and S3, a periodic function with a period of T = 12 is obtained.
In the interval 0 ≤ t < 3, it coincides with the function f(t). This is illustrated in figure 2.
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This approach may be generalized for any number n of equal intervals in which a
decision is made to divide the lapse of time ∆t for which the function to be analyzed is
characterized. The signal can be represented in the specified lapse of time, by the sum of
n trains of square waves. The periods corresponding to the different trains S1, S2, . . . , Sn

of square waves are as follows:

T1 = 2∆t
(n

n

)

= 2∆t

T2 = 2∆t

(

n − 1

n

)

(4)

T3 = 2∆t

(

n − 2

n

)

...

Tn = 2∆t

(

1

n

)

In other words:

Ti = 2∆t

(

n − i + 1

n

)

; i = 1, 2, . . . , n (5)

Of course, the frequencies of these trains of waves will be the inverse of the corresponding
periods:

fi =
1

2∆t

(

n

n − i + 1

)

; i = 1, 2, . . . , n (6)
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For example, attention will be given below to the system of equations resulting if n = 7:

A1 + A2 + A3 + A4 + A5 + A6 + A7 = C1

A1 + A2 + A3 + A4 + A5 + A6 − A7 = C2

A1 + A2 + A3 + A4 + A5 − A6 + A7 = C3

A1 + A2 + A3 + A4 − A5 − A6 − A7 = C4 (7)

A1 + A2 + A3 − A4 − A5 + A6 + A7 = C5

A1 + A2 − A3 − A4 − A5 + A6 − A7 = C6

A1 − A2 − A3 − A4 + A5 − A6 + A7 = C7

In the above equations, |A1|, |A2|, . . . and |A7| are the amplitudes corresponding respec-
tively to trains S1, S2, . . . and S7. C1, C2, . . . and C7 are the values of f(t) corresponding
to the midpoints of the seven subintervals considered here of the time interval ∆t in which
the function treated by the technique described above has been characterized.

It has been supposed that the values of f(t) at these midpoints are computable. What
should be done if one of the midpoints – ti – turns out to be precisely a point of disconti-
nuity of the signal f(t)? In other words, what value should be attributed to f(t), in this
case, at that point ti? One possible criterion – based on results obtained by the Fourier
series – is the following: the value given to f(ti) is the average of the left and right lateral
limits, which is

f(ti) =
1

2

(

lim
t→ti−

f(t) + lim
t→ti+

f(t)

)

(8)

Of course, the time interval for which the function to be treated is specified may be
any whatsoever. (There is no reason for one of the extremes to be, necessarily, the origin
of the time axis of the system of coordinates used.)

Let the following function of time g(t) be characterized in the interval 1 ≤ t < 4.

g(t) =











1 if 1 ≤ t < 3

2

−2 if 3

2
≤ t < 7

3

et if 7

3
≤ t < 4

(9)

Consider that the interval 1 ≤ t < 4 is subdivided into seven subintervals with a
length of 3/7. Here the function g(t) will be approximated by the step function h(t)
which, in each of the seven subintervals considered, is constant and is such that its value
corresponds to that of g(t) at the midpoint of the corresponding subinterval. Then the
amplitudes corresponding to the trains of square waves S1, S2, . . . and S7, whose sum is
approximated by the function g(t) in the interval 1 ≤ t < 4, will be determined. This is
equivalent to expressing the step function h(t) as a sum of seven trains of square waves. To
determine the amplitudes of these trains of square waves, the following system of equations
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should be solved:

A1 + A2 + A3 + A4 + A5 + A6 + A7 = 1

A1 + A2 + A3 + A4 + A5 + A6 − A7 = −2

A1 + A2 + A3 + A4 + A5 − A6 + A7 = −2

A1 + A2 + A3 + A4 − A5 − A6 − A7 = e5/2 (10)

A1 + A2 + A3 − A4 − A5 + A6 + A7 = e41/14

A1 + A2 − A3 − A4 − A5 + A6 − A7 = e47/14

A1 − A2 − A3 − A4 + A5 − A6 + A7 = e53/14

Figure 3 represents the approximation to g(t) by the sum of the seven trains of square
waves S1, S2, . . . and S7 in the interval 1 ≤ t < 4.

For this case, the result is g(t) '

7
∑

i=1

Si, with each Si being a train of square waves.

The periods corresponding to S1, S2, . . . and S7 are as follows:

T1 = 6, T2 =
36

7
, T3 =

30

7
, T4 =

24

7
, T5 =

18

7
, T6 =

12

7
and T7 =

6

7
.

(11)

Of course, the larger the number of trains of square waves added, the closer the approx-
imation of a given function. Thus, for example, in figures 4 and 5 the approximations
obtained for that function are shown, when adding 17 and 119 trains of square waves
respectively. In figure 5, with the degree of resolution used, it is impossible to distinguish
between the approximation obtained and the given function.
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When using the above technique, the signals may be approximated in their regions of
continuity as precisely as desired.

3 Description of the method used

The method used for the analysis of signals is described in this section, and the corre-
sponding results are presented in sections 4 and 5.

Suppose that one wants to analyze an interval of a signal of which there are N “sam-
ples”. If the signal considered has been characterized analytically, the values of these
“samples” are computed (using the method described in section 2) for a sequence of in-
stants. However, if the signal has been generated by a physical process, these values are
taken from a file containing a sequence of them. Of course, in this case, the values of
the “samples” have been obtained by measurements and not by computation. It may be
admitted that the subintervals found between any two consecutive “samples” whatsoever
are the same. If the signal to be analyzed has been characterized analytically, these N

values can be calculated.

Let us admit that the signal displays a certain structure such that parts of it corre-
sponding to the sequences of M “samples” (with M ≤ N), or comprised of a number of
“samples” near to M (such as M − 1 or M + 2, for example), are particularly interesting.
In this case it would be useful to map, onto the time axis, a “window” with a length of
M – that is, one composed of M “samples” – with which the sequence of N “samples”
mentioned above will be swept. The first position of the “window” will include “samples”
1, 2, . . . and M . The second position of the “window” will include “samples” 2, 3, . . .

and M + 1, and so on accordingly, in such a way that the last position of the “window”
will include “samples” N − M + 1,N −M + 2, . . . and N . The total number of positions
of the “window” will be equal to N − M + 1.

It will be convenient for M to be equal to an odd number so that the “window”
will have a middle “sample”; therefore, if a “window” includes 17 “samples”, the middle
“sample” will be the ninth.

Let us admit that the “samples” of the sequence of N “samples” considered have been
numbered from 1 to N . For the first position of the “window”, the middle “sample” will

have the number
M − 1

2
+1; for the second position of the “window”, the middle “sample”

will have the number
M − 1

2
+ 2; and for the third position of the “window”, the middle

“sample” will have the number
M − 1

2
+ 3, and so on successively. In general, for the

kth position of the “window”, the middle “sample” will have the number
M − 1

2
+ k;

in particular, for the last position of the “window”, the middle “sample” will have the

number
M − 1

2
+ N − M + 1 = N −

M

2
+

1

2
.

For each one of the positions of the “window” mentioned, the type of analysis described
in section 2 will be carried out, based on the use of trains of square waves. Thus if the
window has a length equal to M , then for the corresponding signal analysis process, M
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trains of square waves will be used: S1, S2, . . . and SM .
A description is provided below of the procedure used to obtain a graph in which it

can be clearly seen how, for the signal analyzed, a certain value corresponding to S1 (the
value of A1 mentioned in section 2) depends on the location of the window with a length
of M .

The axis of the abscissas will be time.
Consider the window located in its first position. The type of analysis described in

section 2 will be applied to the part of the signal corresponding to that position of the
window. Hence, a certain value A1 will be determined. The first point to be plotted on
the graph is one whose abscissa is the midpoint of the interval corresponding to the first
position of the window and whose ordinate is that value A1.

Now consider the window located in its second position. The type of analysis described
in section 2 will be applied to the part of the signal corresponding to that position of the
window. Thus, a certain value A1 will be determined. The second point to be plotted
on the graph is one whose abscissa is the midpoint of the interval corresponding to the
second position of the window and whose ordinate is that value A1. Because the window
has been displaced, there is no reason for that second value graphed to be the same as the
first value graphed.

Consider the window located in its third position. The type of analysis described in
section 2 will be applied to the part of the signal corresponding to that position of the
window. Hence, a certain value A1 will be determined. The third point to be plotted on
the graph is one whose abscissa is the midpoint of the interval corresponding to the third
position of the window and whose ordinate is the value A1. Because the window has been
displaced, there is no reason for that third value graphed to be the same as either of the
values graphed previously.

And so on accordingly.
It may be considered that the sequence of values obtained by this procedure corre-

sponds to a certain function of time A∗
1.

An analogous procedure may be followed for the trains of square waves S2, S3, . . . and
SM . It may be considered that each of the sequences of values obtained for those trains
of waves correspond to the functions of time A∗

2, A∗
3, . . . and A∗

M respectively.

4 Application of the SWM to analytically characterized sig-

nals

4.1 Example 1

Consider the following function:

g1(t) = B sin 2πf1t + C sin 2πf2t,

B = 6 C = 2 (12)

f1 = 1 f2 = 4

The signal g1(t) has been represented in figure 6.
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When applying the SWM to this function with M = 25 and N = 2000, the results
shown in figures 7a, 7b, 7c and 7d are obtained. (The graphs corresponding to the functions
S∗

i , i = 4, 5, . . . , 24, have been omitted.)
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When applying the SWM to g1(t) with M = 155 and N = 2000, the results shown in



a new method for the analysis of signals: the square-wave method 119

figures 8a, 8b, 8c and 8d are obtained. (The graphs corresponding to the functions S∗
i ,

i = 4, 5, . . . , 154, have been omitted.)
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4.2 Example 2

Consider the following function:

g2(t) = B sin 2πf1t × C sin 2πf2t,

B = 6 C = 2 (13)

f1 = 1 f2 = 4

The signal g2(t) has been represented in figure 9.
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When applying the SWM to this function with M = 25 and N = 2000, the results
shown in figures 10a, 10b, 10c and 10d are obtained. (The graphs corresponding to the
functions S∗

i , i = 4, 5, . . . , 24, have been omitted.)



122 O. Skliar – V. Medina – R.E. Monge Rev.Mate.Teor.Aplic. (2008) 15(2)

When applying the SWM this function with M = 155 and N = 2000, the results shown
in figures 11a, 11b, 11c and 11d are obtained. (The graphs corresponding to the functions
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S∗
i , i = 4, 5, . . . , 154, have been omitted.)
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5 Application of the SWM to the analysis of an audio signal

Consider the audio signal A(t) corresponding to the sound obtained by pressing a piano
key – middle C. In this case, the frequency of the audio signal is equal to 268Hz. The
sampling frequency is 44.1KHz. In figure 12, this audio signal has been represented in the
time interval found between 0 and 10−1 s.
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When the SWM is applied to this signal with M = 25 and N = 4192, the results
shown in figures 13a, 13b, 13c and 13d are obtained. (The graphs corresponding to the
functions S∗

i , i = 4, 5, . . . , 24, have been omitted.)
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When the SWM is applied to this same audio signal with M = 617 and N = 4192, the
results shown in figures 14a, 14b, 14c and 14 d are obtained. (The graphs corresponding
to the functions S∗

i , i = 4, 5, . . . , 616, have been omitted.)
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6 Conclusions and prospects

No limitations have been found for the applicability of the SWM to functions of time, in
time intervals in which these functions satisfy the Dirichlet conditions [1].

It should be stressed that the computations required for the application of the SWM
are relatively simple. They only involve solving systems of linear algebraic equations.

In future papers the following topics will be discussed:

I. Dependency on the
M

N
relation in the results obtained by applying the SWM;

II. Generalization of the SWM for the analysis of signals depending on more than one
variable.

It should be emphasized that with the introduction of the SWM no attempt is made,
in the least, to take the place of the extremely important field of mathematics generated
from Fourier’s seminal findings. Nevertheless, the fact that outstanding conceptual and
technical resources exist for signal analysis does not mean that the possibility of developing
a new method for that purpose should be dismissed.

As mentioned in the introduction of this article, it is not our objective at this time to
compare the SWM with the Fourier approach. (For that to be meaningful, this new method
must first be presented, and later developed at least minimally.) However, attention should
probably be given to two preliminary questions which some readers of this article may ask:

a. Is it more complicated and tedious to use the SWM than it is to resort to the Fourier
approach? No, it is actually simpler. Thus, for example, it is easier to compute each
Ai (i = 1, 2, 3, . . . ) by solving systems of linear algebraic equations than it is to
calculate Fourier coefficients.

b. Are the results obtained by applying the SWM less exact and precise than those
calculated using the Fourier approach? No, in both cases, the analysis may be as
exact and as precise as desired, if enough computing time is devoted to the task.
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