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262 L. RINCÓN

Abstract

We provide a recursive formula for the computation of moments of dis-
tributions belonging to a subclass of the exponential family. This
subclass includes important cases as the binomial, negative binomial,
Poisson, gamma and normal distribution, among others. The recursive
formula provides a procedure to sequentially calculate the moments using
only elementary operations. The approach makes no use of the moment
generating function.

Keywords: moments; exponential family; recursive formula.

Resumen

Se proporciona una fórmula recursiva para calcular los momentos de
ciertas distribuciones que pertenecen a una subclase de la familia exponen-
cial. A esta subclase de distribuciones pertenecen las distribuciones bino-
mial, binomial negativa, Poison, gama y normal, entre otras. La fórmula
recursiva provee de un procedimiento para calcular los momentos de ma-
nera secuencial usando únicamente operaciones elementales. El método
no hace uso de la función generadora de momentos.

Palabras clave: momentos; familia exponencial; fórmula recursiva.

Mathematics Subject Classification: 60E05, 97K50, 97K60.

1 Introduction

Finding the moments of a given probability distribution is not an easy problem
in most cases. These are defined, in the continuous case and assuming absolute
convergence, as the numbers:

E(Xn) =

∫ ∞
−∞

xnf(x) dx, n = 0, 1, . . . (1)

where X is a random variables with probability density f(x). Frequently, there
is no closed form for such quantities. Uncommon cases are the Poisson and the
exponential distributions, where closed formulas are well known for their mo-
ments of arbitrary order. For the binomial distribution, on the other hand, no
formula is known. In 2005, Benyi and Manago [2] provided a simple recur-
sive expression for the k-th moment of the bin(n, θ) distribution in terms of the
(k − 1)-th moment of the bin(n, θ) and bin(n − 1, θ) distributions, but only in
the case θ = 1/2. More generally, in 1981, Link [11] provided formulas for the
moments of some discrete probability distributions in terms of finite difference
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operators. In 1982, Chan [3] systematized the method of Link in terms of opera-
tor valued probability generating functions and applied it to the hypergeometric
and the negative hypergeometric distributions.

In this work we present a general formula to recursively calculate the mo-
ments of any probability distribution belonging to a subclass of the so-called
exponential family of distributions. We will see that our recursive formula takes
a different approach from the classical method to calculate moments using the
moment generating function and has some computational advantages.

It is worth mentioning that moments of distributions are important quantities
since they are often used in standard statistical procedures to identify
a distribution. What underlies in those applications is the fact that, under cer-
tain conditions, the set of all moments uniquely determine a distribution [1]. Let
us start by defining the probability distributions we will concentrate on.

2 A subclass of the exponential family

Consider the one-parameter exponential family of probability densities:

f(x; θ) = a(θ) b(x) exp{c(θ) d(x)}, (2)

where a(θ), b(x), c(θ) and d(x) are functions depending only on a parameter
θ or a variable x, as indicated. This family includes several important distri-
butions, both discrete and continuous, but for simplicity we will call f(x; θ)
a density. The support of these densities is determined by b(x) and d(x), and the
specification of these functions may include the indicator function of a certain set
of real numbers. General properties are well known for this important collection
of distributions, see for example [12]. To define the subclass of distributions we
will study, we consider the case d(x) = x, and for convenience c(θ) is replaced
by ln c(θ). Then, the density (2) reduces to:

f(x; θ) = a(θ) b(x) (c(θ))x. (3)

Table 1 shows some examples of discrete and continuous distributions with den-
sities in the form (3).

It is easy to verify that those definitions of a(θ), b(x) and c(θ) yield the
corresponding density for each distribution. In particular, for the binomial dis-
tribution, it is customary to use the letter n for the number of trials, however, we
will reserve that letter to denote the general order of a moment. Also, recall the
geometric(θ) distribution is the particular case of neg bin(r, θ) when r = 1, and
the exp(θ) distribution is included in the gamma(α, θ) case when α = 1.
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264 L. RINCÓN

Table 1: Some probability distributions.

Distribution a(θ) b(x) c(θ)

bin(m, θ) (1− θ)m
(
m

x

)
· 1{0,1,,...,m}(x)

θ

1− θ

neg bin(r, θ) θr
(
r + x− 1

x

)
· 1{0,1,...}(x) 1− θ

Poisson(θ) e−θ
1

x!
· 1{0,1,...}(x) θ

gamma(α, θ) θα
xα−1

Γ(α)
· 1(0,∞)(x) e−θ

N(θ, σ2) e−θ
2/2σ2 1√

2πσ2
, e−x

2/2σ2
eθ/σ

2

3 General results

Here is our main result and some general immediate consequences.

Theorem 1 : Let X be a random variable with density (3), where a(θ) and c(θ)
are differentiable with c′(θ) 6= 0. The n-th moment of X exists and is given by:

E(Xn) =
c(θ)

c′(θ)

(
−a
′(θ)

a(θ)
+

d

dθ

)
E(Xn−1), for n ≥ 1. (4)

There are several ways to prove this formula. For example, considering the
continuous case and interchanging the derivative and the integral, we have:

E(Xn) =

∫ ∞
−∞

a(θ) b(x)xn−1 [x (c(θ))x−1] c(θ) dx

=

∫ ∞
−∞

b(x)xn−1
[
d

dθ
(c(θ))x

]
a(θ)

c(θ)

c′(θ)
dx

=

∫ ∞
−∞

b(x)xn−1[
d

dθ

(
a(θ)

(c(θ))x+1

c′(θ)

)
− (c(θ))x

d

dθ

(
a(θ)

c(θ)

c′(θ)

)]
dx

=
d

dθ

(
c(θ)

c′(θ)
E(Xn−1)

)
−
(

1

a(θ)

d

dθ

(
a(θ)

c(θ)

c′(θ)

))
E(Xn−1)

=
c(θ)

c′(θ)

(
−a
′(θ)

a(θ)
+

d

dθ

)
E(Xn−1). (5)
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Similar procedure applies in the discrete case. Alternatively, analogous cal-
culations show that the following formula holds:

c(θ)

c′(θ)

(
−a
′(θ)

a(θ)
+

d

dθ

)
f(x; θ) = x · f(x; θ). (6)

Multiplying by xn−1, integrating or summing respect to x and interchanging the
derivative and the integral, leads to (4). Yet for another proof one can simply
expand the right hand side of (4), interchange the derivative and the integral
(or sum in the discrete case), and obtain the same result.

Thus, formula (4) expresses the n-th moment in terms of a differential oper-
ator applied to the (n − 1)-th moment, starting from E(X0) = 1. In particular,
for n = 1 and n = 2, general formulas for the expectation and variance of X
can be obtained, namely:

E(X) = − c(θ)
c′(θ)

· a
′(θ)

a(θ)
. (7)

Var(X) =
c(θ)

c′(θ)
· E′(X). (8)

Here the dash in the expectation also means derivative respect to θ. More gen-
erally, we can write the n-th moment of X as the n-th power of the differential
operator applied to the constant 1, i.e.

E(Xn) =

[
c(θ)

c′(θ)

(
−a
′(θ)

a(θ)
+

d

dθ

)]n
(1). (9)

This is a rather compact formula but calculating the n-th power of the differ-
ential operator is not simple since the two terms inside the square bracket do
not commute. From (7) and (8), we can alternatively write:

E(Xn) =

[
E(X) +

Var(X)

E′(X)

d

dθ

]n
(1). (10)

In [10] there is a nice formula for the m.g.f. of distributions in the exponential
family. However, formula (4) takes a different approach in calculating moments
and we will demonstrate that this recursive relation has some advantages.

Formula (4) is not completely new. It can be derived from Stein’s iden-
tity [18] in the case of the normal distribution and its extension given by Hud-
son [5] for the exponential family. However, its derivation is not straightforward.
See also [8]. We have here derived (4) without relying on any previous work.
In the rest of this paper we will specialize (4) to the distributions shown in
Table 1. These results are summarized in Table 2.
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266 L. RINCÓN

Table 2: Moment recursive formulas.

Distribution Moment recursive formula

bin(m, θ) E(Xn) =

[
mθ + θ(1− θ) d

dθ

]
E(Xn−1)

neg bin(r, θ) E(Xn) =

[
r(1− θ)

θ
− (1− θ) d

dθ

]
E(Xn−1)

Poisson(θ) E(Xn) =

[
θ + θ

d

dθ

]
E(Xn−1)

gamma(α, θ) E(Xn) =

[
α

θ
− d

dθ

]
E(Xn−1)

N(θ, σ2) E(Xn) =

[
θ + σ2

d

dθ

]
E(Xn−1)

4 Some particular cases

4.1 Binomial distribution

The n-th moment of X ∼ bin(m, θ) satisfies:

E(Xn) =

(
mθ + θ(1− θ) d

dθ

)
E(Xn−1), n ≥ 1. (11)

Starting from E(X0) = 1 and applying the differential operator successively we
have the next expressions:

E(X) = mθ (12)

E(X2) = mθ +m(m− 1)θ2

E(X3) = mθ + 3m(m− 1)θ2 +m(m− 1)(m− 2)θ3

E(X4) = mθ + 7m(m− 1)θ2 + 6m(m− 1)(m− 2)θ3

+m(m− 1)(m− 2)(m− 3)θ4

E(X5) = mθ + 15m(m− 1)θ2 + 25m(m− 1)(m− 2)θ3

+10m(m− 1)(m− 2)(m− 3)θ4

+m(m− 1)(m− 2)(m− 3)(m− 4)θ5

...

Although these expressions grow quickly in length, the calculations are straight-
forward, particularly if a computer is used. See comments in the last section.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 28(2): 261–277, Jul–Dec 2021



A MOMENT RECURSIVE FORMULA FOR A CLASS OF DISTRIBUTIONS 267

These results extend those in [2] and clearly suggest the following general
formula which can be proved by induction using the differential operator.

Corollary 1 : Let X ∼ bin(m, θ). For any integer n ≥ 1,

E(Xn) =
n−1∑
j=0

ξ(n, j) ·m(m− 1) · · · (m− j) · θj+1. (13)

where coefficients ξ(n, j) satisfy the difference equation:

ξ(n, j) = ξ(n− 1, j − 1) + (j + 1) · ξ(n− 1, j), j = 1, . . . , n− 1. (14)

with boundary conditions ξ(n, 0) = 1 and ξ(n, n− 1) = 1.

Using the recursive relation (11) applied to (13), we obtain an equality of two
polynomials in θ. Equating the corresponding coefficients, one arrives at the
difference equation (14). The boundary coefficients being the first and the last
equality in the power series. Observe the coefficients ξ(n, j) do not depend on
the parameters of the distribution and the first few of them can be written in a
triangle array:

1

1 1

1 3 1

1 7 6 1

1 15 25 10 1 (15)

· · · · · ·

As an example, let us take the number 25 in the array (15). This corresponds to
the fifth moment (n = 5) and index j = 2. Then 25 = 7+(j+1) ·6. Solving the
difference equation (14) seems to be a difficult task and we will not attempt to do
that here. However, for j = 1, it is not difficult to check that ξ(n, 1) = 2n−1−1,
for n ≥ 2. This yields the values 1, 3, 7, 15 in the second column of (15).

It is also interesting to note that the power series of the n-th moment of X
has n different terms as shown in (12), or (13), as long as n ≤ m.
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268 L. RINCÓN

For moments of order larger than the parameter m, the power series (13)
has at most m terms since there is a vanishing factor when the index j reaches
the value m and beyond. For example, suppose m = 2. Then the list of
moments (12) reduces to:

E(X) = mθ

E(X2) = mθ +m(m− 1)θ2

E(X3) = mθ + 3m(m− 1)θ2

E(X4) = mθ + 7m(m− 1)θ2

E(X5) = mθ + 15m(m− 1)θ2 (16)
...

The coefficients are as in (15) but restricted to only the first two columns.
The rest of the array is discarded. These coefficients still satisfy the difference
equation (14), namely for j = 1, we have 3 = 1 + (j+ 1) · 1, 7 = 1 + (j+ 1) · 3
and 15 = 1+(j+1)·7. Thus, formula (13) and the difference equation (14) hold
for all possible values of the parameter m, although several summands of (13)
are null. The extreme case m = 1 reduces all moments to the same value θ
as expected.

4.2 Negative binomial distribution

The n-th moment of X ∼ neg bin(r, θ) satisfies:

E(Xn) =

(
r(1− θ)

θ
− (1− θ) d

dθ

)
E(Xn−1), n ≥ 1. (17)

Starting from E(X0) = 1, one obtains:

E(X) = (r − rθ)/θ
E(X2) = ((r + r2)− (r + 2r2)θ + r2θ2)/θ2

E(X3) = ((2r + 3r2 + r3)− 3(r + 2r2 + r3)θ + (r + 3r2 + 3r3)θ2 − r3θ3)/θ3
... (18)

The case r = 1 reduces to the geometric(θ) distribution and we can write a
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few more moments:

E(X) = (1− θ)/θ
E(X2) = (2− 3θ + θ2)/θ2

E(X3) = (6− 12θ + 7θ2 − θ3)/θ3

E(X4) = (24− 60θ + 50θ2 − 15θ3 + θ4)/θ4

E(X5) = (120− 360θ + 390θ2 − 180θ3 + 31θ4 − θ5)/θ5 (19)
...

These expressions suggest the following result.

Corollary 2 : Let X ∼ geometric(θ). For any integer n ≥ 1,

E(Xn) =

n∑
j=0

ξ(n, j) · θ
j

θn
. (20)

where coefficients ξ(n, j) satisfy the difference equation:

ξ(n, j) = (n− j) · ξ(n− 1, j) + (j − n− 1) · ξ(n− 1, j − 1). (21)

for j = 1, 2, . . . , n − 1, with boundary conditions ξ(n, 0) = n! and ξ(n, n) =
(−1)n.

This can be proved by induction using the differential operator. The dif-
ference equation follows after equating the coefficients of the two polynomials
obtained when the power series (20) is substituted in the recursive formula (17)
with r = 1.

4.3 Poisson distribution

The n-th moment of X ∼ Poisson(θ) satisfies:

E(Xn) =

(
θ + θ

d

dθ

)
E(Xn−1), n ≥ 1. (22)

Starting from E(X0) = 1 one successively obtains:

E(X) = θ

E(X2) = θ + θ2

E(X3) = θ + 3θ2 + θ3

E(X4) = θ + 7θ2 + 6θ3 + θ4

E(X5) = θ + 15θ2 + 25θ3 + 10θ4 + θ5 (23)
...
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Again, this sequence of polynomials suggests that the n-th moment of this dis-
tribution can be written as follows.

Corollary 3 Let X ∼ Poisson(θ). For any integer n ≥ 1,

E(Xn) =
n−1∑
j=0

ξ(n, j) · θj+1. (24)

where coefficients ξ(n, j) satisfy the difference equation:

ξ(n, j) = ξ(n− 1, j − 1) + (j + 1) · ξ(n− 1, j). j = 1, . . . , n− 1, (25)

with boundary conditions ξ(n, 0) = 1 and ξ(n, n) = 0.

As in the previous examples, this result can be proved by induction using the
differential operator. The difference equation (25) is a consequence of equating
the coefficients of the two polynomials obtained when the power series (24) is
substituted in the recursive formula (22).

It is interesting to note that coefficients ξ(n, j) for the Poisson distribution
are exactly the same as in the binomial distribution. This is really no surprise
since the moments of the binomial distribution converge to the moments of
the Poisson distribution. Indeed, we can readily verify this classical result us-
ing (13). The factor m(m − 1) · · · (m − j) pj+1 which appears in the n-th mo-
ment of the bin(m, p) distribution can be written as mp · (m− 1)p · · · (m− j)p.
This converges to θj+1 when m→∞ and p→ 0 in such a way that mp→ θ.

To finish this section, let us recall that for the Poisson(θ) distribution the
following formula is known: E(Xn) = θ

∑n−1
k=0

(
n−1
k

)
E(Xk). This can be

proved by induction on n using the recursive formula (22). See also [15] for an
alternative formula in this case.

4.4 Gamma distribution

The n-th moment of the gamma(α, θ) distribution satisfies:

E(Xn) =

(
α

θ
− d

dθ

)
E(Xn−1). n ≥ 1, (26)
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which yields the sequence:

E(X) = α/θ,

E(X2) = (α+ α2)/θ2,

E(X3) = (2α+ 3α2 + α3)/θ3

E(X4) = (6α+ 11α2 + 6α3 + α4)/θ4

E(X5) = (24α+ 50α2 + 35α3 + 10α4 + α5)/θ5 (27)
...

It is known, for this distribution, that E(Xn) = α(α+ 1) · · · (α+ n− 1)/θn.
The case α = 1 reduces to the exp(θ) distribution, for which E(Xn) = n!/θn.
These two formulas can now be proved by induction using (26). The above
sequence of polynomials suggest that the n-th moment of the gamma distribution
can also be written as follows.

Corollary 4 : Let X ∼ gamma(α, θ). For any integer n ≥ 1,

E(Xn) =
n−1∑
j=0

ξ(n, j) · α
j+1

θn
. (28)

where coefficients ξ(n, j) satisfy the difference equation:

ξ(n, j) = ξ(n− 1, j − 1) + (n− 1) · ξ(n− 1, j). j = 1, . . . , n− 2, (29)

with boundary conditions ξ(n, 0) = (n− 1)! and ξ(n, n− 1) = 1.

Once more, this result is obtained after equating the coefficients of the two
polynomials resulting when (28) is substituted into the recursive formula (26).
Considering the exponential case (α = 1), note that n! should be equal to the
sum of the numeric coefficients of E(Xn), for example, for the fifth moment,
5! = 1 + 10 + 35 + 50 + 24. This is indeed the case in general and we
prove it next.

Corollary 5 : The coefficients ξ(n, j) given by (29) satisfy
n−1∑
j=0

ξ(n, j) = n!

Let Sn be the sum of all numeric coefficients of the n-th moment. Using the
difference equation (29) and the boundary conditions it is easy to obtain that
Sn = n · Sn−1, from which the result follows.
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4.5 Normal distribution

The n-th moment of the N(θ, σ2) distribution satisfies:

E(Xn) =

(
θ + σ2

d

dθ

)
E(Xn−1). n ≥ 1. (30)

Starting from E(X0) = 1, one obtains successively:

E(X) = θ,

E(X2) = θ2 + σ2,

E(X3) = θ3 + 3θσ2,

E(X4) = θ4 + 6θ2σ2 + 3σ4,

E(X5) = θ5 + 10θ3σ2 + 15θσ4,

E(X6) = θ6 + 15θ4σ2 + 45θ2σ4 + 15σ6,

E(X7) = θ7 + 21θ5σ2 + 105θ3σ4 + 105θσ6,

E(X8) = θ8 + 28θ6σ2 + 210θ4σ4 + 420θ2σ6 + 105σ8,

E(X9) = θ9 + 36θ7σ2 + 378θ5σ4 + 1260θ3σ6 + 945θσ8,

E(X10) = θ10 + 45θ8σ2 + 630θ6σ4 + 3150θ4σ6 + 4725θ2σ8 + 945σ10

... (31)

We have written a longer list of moments here as a careful examination
of these expressions was crucial to derive the following general formula for
even moments.

Corollary 6 : Let X ∼ N(θ, σ2). For any integer n ≥ 0,

E(X2n) =
n∑
k=0

(
2n

2k

)(
2k

k

)
k!

2k
θ2n−2k σ2k. (32)

A proof by induction follows after some lengthy algebraic operations using the
differential operator twice. Assuming the formula holds for some integer n ≥ 0,
the squared differential operator applied to the above sum yields four sums not all
of them with index from 0 to n due to the derivatives. Making a change of index
when appropriate so that the powers in each sum appear as θ2n+2−2k σ2k and
joining the sums produce the result for 2n + 2. In particular, when θ = 0, only
the last term (k = n) of the sum in (32) remains and the well known formula
E(X2n) = [(2n)!/(2n n!)] (σ2)n is recovered. Also, from (32) we can now
derive a general formula for the odd moments.
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Corollary 7 : Let X ∼ N(θ, σ2). For any integer n ≥ 0,

E(X2n+1) =

n∑
k=0

(
2n+ 1

2k

)(
2k

k

)
k!

2k
θ2n−2k+1 σ2k. (33)

This formula follows after applying the differential operator to the expression of
E(X2n). For centralized normal distributions (θ = 0), odd moments are zero
as expected.

5 Approximations to probability densities

As an application of our results, in this section we briefly recall a few moment-
based schemes to approximate a probability density. For a more detailed discus-
sion see [6], [14] and [16].

Let f(x) be a probability density with bounded support (a, b). In [13],
Munkhammar et al. discuss the method of moments to approximate f(x) by
a polynomial:

p(x) = w0 + w1x+ w2x
2 + · · ·+ wnx

n. a < x < b, (34)

for some coefficients w0, w1, . . . , wn and some natural number n. Equating the
first n+1 moments of f(x) with those of p(x) (as if p(x) were a genuine density
on (a, b)), yields a system of n + 1 linear equations for the unknown weights
w0, w1, . . . , wn. Assuming a unique solution for such a linear system exists,
we have the approximation f(x) ≈ p(x). Thus, p(x) is a polynomial that best
approximates f(x) in the sense defined above. As n increases, more moments of
f(x) are needed and the approximation becomes more accurate. It is clear that
knowing an arbitrary number of moments of f(x) is crucial in this procedure.

In most practical situations f(x) is unknown, a sample is then required and
the sampling moments are used instead of the theoretical moments. In our case,
we can assume f(x) is known and belongs to the exponential family in its re-
duced form (3). Its moments of any order can be calculated using the recursive
formula (4).

The advantage of such an approximation lies in the fact that the calculation
of some probabilities could be simpler using p(x) instead of f(x). For example,
this approach can be used to approximate probabilities for the N(0, 1) distribu-
tion truncated on the bounded interval (−4, 4).

There are other more elaborate polynomial expansions for a probability den-
sity f(x). One of such expansions is the Gram-Charlier series of type A. This
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series is defined in terms of standard normal distribution and the Hermite polyno-
mials. Again, the moments of f(x) are used in such a construction.
See [4] and [9].

More particularly, in the classical theory of risk, it is important to determine
the distribution of the aggregate loss defined by the compound random variable:

X =
N∑
i=1

Ui. (35)

where N counts the random number of losses over a definite period of time and
U1, U2, . . . denote the losses. It is customary to assume that the random vari-
ables Ui are positive, independent, identically distributed and independent of N .
Finding the distribution of X is a hard problem and any approximation is of
practical importance.

Jin et al. [6] and Nadarajahet al. [14] apply a moment-based method intro-
duced by Provost [16] to approximate the density function of (35). In this case,
the distribution of the random variables N and Ui are known but the density
function f(x) of (35) is completely unknown. However, its moments can be
computed in terms of the moments of N and Ui, assuming we know the latter.
The approximation reads:

f(x) ≈ g(x) [ c0 + c1 x+ · · ·+ ct x
t ]. (36)

where t is a natural number and g(x) is the density of a gamma distribution.
This is called the base distribution and is one of several options available. The
two parameters of the gamma density are chosen so that the first and second mo-
ment of g(x) coincide with those of f(x). Further moments of f(x) are then
used to determine the coefficients c0, . . . , ct. Now, ifN and Ui follow a distribu-
tion for which formulas are known for their moments, or belong to the family (3)
so that we can recursively calculate their moments, then the moments of X can
be found and the approximation (36) can be carried out. This shows a practical
application where moments can help approximate an unknown distribution.

6 Concluding remarks

We have provided a general recursive formula for the n-th moment of a prob-
ability distribution in a subclass of the exponential family. Classically, if one
needs to calculate such quantity, one can try solving the corresponding inte-
gral (or sum) or calculate the n-th derivative of the moment generating function
(assuming this is given) and evaluate at zero. The alternative procedure here
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proposed requires only the computation of derivatives of polynomials and some
simple algebraic operations. This is perfectly suitable for use in a computer alge-
bra system (CAS), assuming it can calculate derivatives and reduce expressions.
An example of such system is Sage [17], where the command diff() can
be used to calculate derivatives. For example, the following sequence of Sage
commands was used to produce the first 10 moments of the normal distribution:

# Moments normal(t,s2)
t,s2 = var(’t,s2’)
m=1
for n in range(10):

m=t*m+s2*diff(m,t)
print ’Moment’,n+1,’is’,m.simplify_full()

Here t stands for θ and s2 for σ2. The command diff(m, t) calculates
the derivative of m respect to t. Short computer programs like these make the
process of finding the moments a breeze thanks to the recursive perspective.
They also prevent errors in the handling of long expressions and may even yield
full expansions, or adequate factorization, of the results if needed.

The differential operator in the method proposed takes the form
D(θ) = A(θ) + B(θ) d/dθ, where A(θ) and B(θ) are functions of θ speci-
fied in (10). Finding conditions on these two functions such that the sequence
of functions generated by the powers of D(θ) resulted in a truly sequence of
moments is a natural question. Thus, characterization of a distribution via this
differential operator might be possible and this is something worth exploring.
The result we have found provides yet another link between probability theory
and differential difference equations.
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