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Abstract

We consider space-time properties of periodic solutions of nonlinear wave equa-
tions, nonlinear Schrödinger equations and KdV-type equations with initial data from
the support of the Gibbs’ measure. For the wave and Schrödinger equations we estab-
lish the best Hölder exponents. We also discuss KdV-type equations which are more
difficult due to a presence of the derivative in the nonlinearity.
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Resumen

Consideramos las propiedades en espacio tiempo de las soluciones periódicas de
ecuaciones de onda no lineales, ecuaciones no lineales de Schrödinger y ecuaciones de
tipo KdV con datos iniciales del soporte de la medida de Gibbs. Para las ecuaciones
de onda y de Schrödinger establecemos los mejores exponentes de Hölder. También
discutimos las ecuaciones de tipo KdV, que son más dif́ıciles debido a la presencia de
la derivada en la no linealidad.
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1 Nonlinear wave equations

Consider the ID nonlinear wave equation

Qtt −Qxx + f(Q) = 0

with periodic boundary conditions Q(0, t) = Q(2π, t). The equation can be written in the
Hamiltonian form

Qt = {Q,H},
Pt = {P,H},

with H(Q,P ) =
∫ 2π
0

[
P 2

2 + Q2

2 + F (Q)
]
, F ′ = f , and a classical bracket

{A,B} =

∫ 2π

0

[
∂A

∂Q(x)

∂B

∂P (x)
− ∂A

∂P (x)

∂B

∂Q(x)

]
dx.

An invariant Gibbs’ state e−Hd∞Qd∞P in the space1 of pairs (Q,P ) ∈ H0 × H−1 was
constructed in [6] under the assumption that f(Q) is an odd locally Lipschitz function such
that f(Q) ≥ kQ, for some k > 0 and big Q. To simplify the proof we impose an additional
condition on the growth of f at infinity: f(Q) ≤ C(ε)eεQ

2
, for any ε > 0. The Gibbs’ state

is a product measure: the Q component is e−
∫
Q2
x/2d∞Q, a circular Brownian motion with

uniformly distributed initial position multiplied by the Radon-Nikodym factor e−
∫
F (Q)

and “white noise” measure e−
∫
P 2/2d∞P on the P component.

Using variation of parameters we can write the original differential equation in the
integral form

Q(x, t) =
sin
√
−∂2xt√
−∂2x

P0(x) + cos
√
−∂2xtQ0(x)−

∫ t

0
ds

1

2

∫ x+(t−s)

x−(t−s)
dyf(Q(y, s))

= QW (x, t) +N(x, t),

where (Q0, P0) are the initial data. The term QW (x, t) corresponding to the linear wave
equation satisfies the Hölder condition

|QW (x1, t1)−QW (x2, t2)| ≤ K(|x1 − x2|β1 + |t1 − t2|β2), (1)

with 0 < β1, β2 <
1
2 and some random constant K, EK2 <∞, which depends on the β’s.

The bound 1
2 is optimal in a sense that we can not have (1) with some β1 >

1
2 , or β2 >

1
2

and random K, EK2 < ∞. The nonlinear part N(x, t) is a differentiable function of x
and t. The derivatives ∂xN(x, t) and ∂tN(x, t) satisfy (1) with the same exponents not
exceeding 1

2 . These simply means that the local structure of the field Q(x, t) is completely
determined by the term QW (x, t) corresponding to the linear wave equation. We split the
proof of these facts in three different steps.

1Hs is a standard Sobolev’s space, i.e. Q(x) ∈ Hs if (1−∆2)s/2Q(x) ∈ L2[0, 2π].
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Step 1

In the proof of the statement concerning (1) we use Kolmogoroff’s criteria of continuity,
see [4].

Theorem 1 (A. N. Kolmogoroff) Let Q(x, t), (x, t) ∈ D be a random field with real
or complex values and D is a compact domain in R2. Assume that there exist positive
constants γ,C, α1 and α2 with α−11 + α−12 < 1 satisfying

E|Q(x1, t1)−Q(x2, t2)|γ ≤ C[(x1 − x2)α1 + (t1 − t2)α2 ]

for every (xi, ti) ∈ D. Then Q[x, t) has a continuous modification.

Let β1 and β2 be arbitrary positive numbers less than α1c0 or α2c0 respectively, c0 ≡
(1− α−11 − α

−1
2 )/γ. Then there exists a positive random variable K with EKγ <∞ such

that

|Q(x1, t1)−Q(x2, t2)| ≤ K[(x1 − x2)β1 + (t1 − t2)β2 ].

Consider the wave equation Qtt −Qxx = O with Gaussian initial data such that Q is
e−

∫
Q2
x/2d∞Q, and P is e−

∫
P 2/2d∞P restricted to the submanifold Q̂(0) = P̂ (0) = 0.

The Fourier coefficients are independent complex isotropic Gaussian variables such

that Q̂(n) = Q̂(−n), P̂ (n) = P̂ (−n) and E|Q̂(n)|2 = n−2, E|Q̂(n)|2 = 1. Using rotation
invariance of the measure and its invariance under the flow

E|Q(x, t1)−Q(x, t2)|2 = E|Q(0, h)−Q(0, 0)|2 (where h = t2 − t1)

= E

∣∣∣∣∣∣
∑
k 6=0

(cos kh− 1)Q̂(k)

∣∣∣∣∣∣+ E

∣∣∣∣∣∣
∑
k 6=0

sin kh

k
P̂ (k)

∣∣∣∣∣∣
2

= 2
∑
k>0

(cos kh− 1)2

k2
+ 2

∑
k>0

sin2 kh

k2
.

The first term can be overestimated as

≤ c1
∑

0<k≤h−1

(kh)4

k2
+ c2

∑
h−1<k

1

k2
≤ c3h4h−3 + c4h ≤ c5h.

The same estimate holds for the second term. Using the Gaussian character of the field2

QW (x, t):

E|QW (x, t1)−QW (x, t2)|2n ≤ cn|t1 − t2|n.

Likewise

E|QW (x1, t)−QW (x2, t)|2n ≤ cn|t1 − t2|n.

Now apply Kolmogoroff’s criteria and pass to the limit with n→∞.

2Ex2n = (2n)!
2nn!

(Ex2)n if x is a Gaussian variable with zero mean.
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Step 2

Optimality of the Hölder exponent 1
2 for the space increment is a classical result. We

present an elementary proof of this fact which works in other cases as well.
Note that E|Q(•, t)|2s =

∑
E|Q̂(n, t)2(1 +n2)s <∞ if and only if s < 1

2 . The following
fact3 implies the rest. Let Q(x), x ∈ [0, 2π] be a rotationally-invariant Gaussian process
such that

|Q(x1)−Q(x2)| < K(x1 − x2)β

with some K,EK2 <∞. Then E|Q|2s <∞, for all s < β.
From the assumptions made, we get:

E

∫ 2π

0
|Q(x+ h)−Q(x)|2dx ≤ EK2h2β,

Q(x+
πh

4
)−Q(x− πh

4
) = 2i

∑
n 6=0

Q̂(n)einx sin
πhn

4
.

Parsevall’s identity implies

E

∫ 2π

0
|Q(x+

πh

4
)−Q(x− πh

4
)|2dx = 4

∑
n6=0

E|Q̂(n)|2 sin2 πhn

4
.

Therefore ∑
n6=0

E|Q̂(n)|2 sin2 πhn

4
≤ c1h2β

and ∑
1
h
≤n< 2

h

E|Q̂(n)|2 ≤ c2h2β.

The substitution h→ h/2r yields

∑
2r

h
≤n< 2r+1

h

E|Q̂(n)|2 ≤ c3
h2β

4βr
.

Finally ∑
1
h
≤n

E|Q̂(n)|2 ≤
∞∑
r=0

∑
2r

h
≤n< 2r+1

h

E|Q̂(n)|2 ≤ c4h2β,

and4 ∑
k≤|n|

E|Q̂(n)|2 ≤ c4
1

k2β
.

3This is stochastic version of the classical embeding theorem, [7].
4In the proof of this estimate we borrowed the idea from [1, section 82].
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It implies for positive n:

S(n) ≡
∑
n≤k
|Q̂(k)|2 ≤ c4

1

n2β
.

By Abel’s summation formula for positive M and N , we have

N∑
M

E|Q̂(n)|2(1 + n2)s = S(M)(1 +M2)s − S(N + 1)(1 +N2)s

+
N∑

M+1

S(n)[(1 + n2)s − (1 + (n− 1)2)s]

≤ S(M)(1 +M2)s +

N∑
M+1

S(n)[(1 + n2)s − (1 + (n− 1)2)s].

For big n

(1 + n2)s − (1 + (n− 1)2)s = (1 + n2)s[
2s

n
+O(

1

n2
)].

This together with the estimate for S(n) implies

+∞∑
M

E|Q̂(n)|2(1 + n2)s <∞, for s < β.

Negative indexes are handled in the same way. The proof is finished.

For any fixed x, QW (x, •) is a 2π−periodic rotationally invariant Gaussian process
such that E|Q̂W (x, n)|2 = n−2. The same arguments used above show optimality of the
exponent in the time increment.

Step 3

First, we estimate Hölder exponents for a solution of the nonlinear equation. Let h =
t1 − t2, using invariance of the measure

E|Q(x1, t)−Q(x2, t)|2n = E|Q0(x1)−Q0(x2)|2n ≤ cn(x1 − x2)n

E|Q(x, t1)−Q(x, t2)|2n = E|Q(x, h)−Q0(x)|2n

≤ cnE| sin
√
−∂2xh√
−∂2x

P0(x) + cos
√
−∂2xhQ0(x)−Q0(x)|2n

+cnE|
∫ h

0
ds

1

2

∫ x+(h−s)

x−(h−s)
dy f(Q(y, s))|2n.

To estimate the first term replace the measure e−
∫
F × e−

∫
Q2
x/2d∞Q by Ce−k

∫
Q2 ×

e−
∫
Q2
x/2d∞Q with some big C and proceed like in Step 1. To estimate the second term

use Hölder’s inequality and E|f(Q)|2n <∞ for every n. Eventually

E|Q(x, t1)−Q(x, t2)|2n ≤ cn(t1 − t2)n.
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Kolmogoroff’s criteria implies that Q(x, t) satisfies (1) with the same Hölder exponents
not exceeding 1/2. The last statement concerning derivatives ∂xN(x, t)−∂tN(x, t) follows
from the explicit formulas

∂xN(x, t) = −1

2

∫ h

0
ds[f(Q(x+ (h− s), s))− f(Q(x− (h− s), s))],

∂tN(x, t) = −1

2

∫ h

0
ds[f(Q(x+ (h− s), s)) + f(Q(x− (h− s), s))],

and locally Lipschitz character of f . The proof is completed.

Nonlinear Schrödinger equations

The next point if the discussion is 1D nonlinear Schrödinger equation

iψt = −ψxx + f(|ψ|2)ψ,

where ψ(x, t) is a complex function ψ = Q+iP which satisfies periodic boundary conditions
ψ(0, t) = ψ(2π, t). It can be written in the Hamiltonian form

ψt = {ψ,H}

with the Hamiltonian H = 1
2

∫ 2π
0 |ψx|

2 + F (|ψ|2)dx, F ′ = f and a bracket

{A,B} = 2i

∫ 2π

0

[
∂A

ψ(x)

∂B

ψ(x)
− ∂A

ψ(x)

∂B

ψ(x)

]
dx.

An invariant Gibbs’ state e−Hd∞ψd∞ψ was constructed in [3, 5] under the assumption
that F ≥ 0 is an even polynomial. The Gibbs’ state is a product of two independent
circular Brownian motions on Q and P whose components are coupled together by the
nonlinear factor e−

∫
F (Q2+P 2).

Written in the integral form the equation is

ψ(x, t) = ei∂
2
xtψ0(x)− i

∫ t

0
ei∂

2
x(t−s)f(|ψ|2)ψ(x, s)ds

= ψS(x, t) +N(x, t),

where ψ0(x) is initial data. The solution of the free Schrödinger equation satisfies

|ψS(x1, t1)− ψS(x2, t2)| ≤ K
(
|x1 − x2|β1 + |t1 − t2|β2

)
(2)

with 0 < β1 <
1
2 , 0 < β2 <

1
4 , and random constant K, EK2 < ∞, which depend on β’s.

The exponents 1
2 , 1

4 are optimal. The same can be said about ψ(x, t), a solution of NLS
itself. The proof of this statements is similar to the corresponding one for the nonlinear
wave equation.

The nonlinear term N(x, t) seems to be smoother then ψS(x, t). This implies that
the microstructure of the field ψ(x, t) is determined by the linear term ψS(x, t), but the
proof is not known. Presumably, Hölder exponents for N(x, t) depend on arithmetical
properties of the coefficients of the polynomial F . There is no uniform smoothing as one
can see from the following example.
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Example

Let Γ(x, t) ≡
∑

n6=0 e
inxe−i(n

2+nα)tψ̂0(n), arbitrary α ≥ 0 and ψ̂0(n) are independent

complex isotropic Gaussian variables, E|ψ̂0(n)|2 = 1
1+n2 . The Gaussian field Γ(x, t), x ∈

[0, 2π], s ∈ R1 is stationary in time and rotationally invariant; Γ(•, t) is a complex Ornstein-
Uhlenbeck process with zero mean for any t. By straightforward computation

N(x, t) = −i
∫ t

0
ei∂

2
x(t−s)Γ(x, s)ds

= −i
∫ t

0

∑
n6=0

einxe−in
2(t−s)e−i(n

2+nα)sψ̂0(n)ds

= −i
∑
n 6=0

einxe−in
2tψ̂0(n)

e−in
αt − 1

−inα
.

We see that N(•, t) gains α Sobolev’s exponents in comparison with Γ(•, t).

1.1 KdV-type equations

The last topic of the discussion to KdV-type equations

Qt = −Qxxx + (f(Q))x

with periodic boundary conditions Q(0, t) = Q(2π, t). The equation can be written in the
Hamiltonian form

Qt = {Q,H},

with the Hamiltonian H =
∫ 2π
0

Q2
x
2 + F (Q)dx, F ′ = f and a bracket

{A,B} =

∫ 2π

0

∂A

∂Q(x)
∂x

∂A

∂Q(x)
dx.

An invariant Gibbs state e−Hd∞Q was constructed in [3] for particular nonlinearities
F (Q) = Q3/3 (KdV) and F (Q) = Q4/4 (modified KdV). The measure is a circular
Brownian motion e−

∫
Q2
x/2d∞Q multiplied by the nonlinear term e−

∫
F (Q).

The equation can be written in the integral form

Q(x, t) = e−∂
3
xtQ0(x) + ∂x

∫ t

0
e−∂

3
x(t−s)f(Q(x, s))ds

= QA(x, t) + U [f ](x, t).

According to J. Bourgain (private communication) the solution Q(x, t) will be continuous
in space-time. The solution of the linear Airy equation satisfies

|QA(x1, t1)−QA(x2, t2)| ≤
(
|x1 − x2|β1 + |t1 − t2|β2

)
(3)
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with the optimal bounds 0 < β<
1
2 , 0 < β2 <

1
6 , and some random constant K, EK2 <∞,

which depend on β’s. Nothing is known about smoothness of the nonlinear term U [f ](x, t).
To get some idea consider the KdV equation. In symbolic form

Q = QA + U [Q2]

= QA + U [(QA + U [Q2])2]

= QA + U [Q2
A] + U [2QAU [Q2] + U2[Q2]]

= QA + U [Q2
A] + . . .

Now look at U [Q2
A], the first term in the “approximation”. We will prove

E(U [Q2
A](x1, t)− U [Q2

A](x2, t))
2 ≤ C|x1 − x2|, (4)

E(U [Q2
A](x1, t)− U [Q2

A](x2, t))
4 ≤ C(ε)|x1 − x2|(2−ε), (5)

for any ε > 0. This indicates that U [Q2
A](•, t) is x-continuous due to (5) by Kolmogoroff

and similar to the Brownian motion because of (4). It is possible that in this case the
local structure of the field Q(x, t) depends on the nonlinear term N(x, t).

To prove (4) and (5) we need Wick’s theorem, see [2].

Theorem 2 (Wick) Let ξ1, ξ2, . . . , ξ2n are real or complex Gaussian variables with zero
mean, then

Eξ1 × · · · × ξ2n =
1

2nn!

∑
µ

Eξµ1ξµ2 × · · · × Eξµ2n−1ξµ2n ,

where summation is taken over the permutation group of 2n elements.

Let QA(x, t) =
∑

n 6=0 e
inxein

3tQ̂0(n) where Q̂0(n) is a Gaussian complex isotropic

variable, Q̂0(n) = Q̂0(−n), E|Q̂0(n)|2 = 1
1+n2 . Then

U [Q2
A](x, t) = ∂x

∫ t

0
e−∂

3
x(t−s)Q2

A(x, s)ds

=
∑
n6=0

einx
∑

n1+n2=n
ni 6=0

Q̂0(n1)Q̂0(n2)
ei(n

3
1+n

3
2)t − ein3t

n31 + n32 − n3
.

Using the arithmetical fact n31 + n32 − n3 = −3nn1n2 we obtain

U [Q2
A](x, t) =

∑
n 6=0

einx
∑

n1+n2=n
ni 6=0

Q̂0(n1)Q̂0(n2)M(n1, n2, t),

where

M(n1, n2, t) =
ei(n

3
1+n

3
2)t − ein3t

−3n1n2
.

Note |M(n1, n2, t)| ≤ 2 if n1n2 6= 0.
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First, we prove that E(U [Q2
A](x, t))2 is finite. Using rotational invariance of the mea-

sure

E(U [Q2
A](x, t))2 = E(U [Q2

A](0, t))2

=
∑

n1,n2 6=0

∑
p1+p2=n1
p3+p4=n2
pi 6=0

EQ̂0(p1)Q̂0(p2)Q̂0(p3)Q̂0(p4)M(p1, p2)M(p3, p4).

By Wick’s rule

EQ̂0(p1)Q̂0(p2)Q̂0(p3)Q̂0(p4) =
1

222!

∑
µ

EQ̂0(pµ1)Q̂0(pµ2)× EQ̂0(pµ3)Q̂0(pµ4).

The sum venishes unless n1 = −n2 and p1 = −p3, p2 = −p4 or p1 = −p4, p2 = −p3.
Therefore

EQ̂0(p1)Q̂0(p2)Q̂0(p3)Q̂0(p4)

= E|Q̂0(p1)|2E|Q̂0(p2)|2 =

{
1

1+p21

1
1+p22

, if p1 6= p2

2 1
1+p21

1
1+p22

, if p1 = p2

and

E(U [Q2
A](x, t))2 ≤ 2

∑
n 6=0

∑
p1+p2=n
pi 6=0

1

1 + p21

1

1 + p22
|M(p1, p2)|2

≤ 8
∑
n 6=0

∑
p1+p2=n
pi 6=0

1

1 + p21

1

1 + p22
≤ c1

∑
n6=0

1

n2
<∞.

In the last estimate we used∫ +∞

−∞

1

1 + x2
1

1 + (n− x)2
dx =

2π

n2 + 4
.

The estimate for the second moment of the increment is similar.

E(U [Q2
A](h, t)− U [Q2

A](0, t))2 =
∑

n1,n2 6=0

(ein1h − 1)(ein2h − 1)×

×
∑

p1+p2=n1
p3+p4=n2
p1 6=0

EQ̂0(p1)Q̂0(p2)Q̂0(p3)Q̂0(p4)M(p1, p2)M(p3, p4)

≤ 2
∑
n6=0

(einh − 1)(−einh − 1)
∑

p1+p2=n
pi 6=0

1

1 + p21

1

1 + p22
|M(p1, p2)|2.

Finally

E(U [Q2
A](h, t)− U [Q2

A](0, t))2 ≤ c2
∑
|n|<h−1

|eihn − 1|
n2

+ c3
∑

h−1≤|n|

1

n2
≤ c4h.

The proof of (5) can be obtained by the same methods.azw
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