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72 E. ÁLVAREZ

Abstract

We aim to fit 4-state sequences of DNA characters from three species
to a tripod tree, whose evolutionary model is Jukes-Cantor. For this pur-
pose, we adapt the closest tree method used in the fit of 2-state sequences
coming from four species to a quartet, where the states are purines and
pyrimidines and the evolutionary model is CFN. The adaptation requires a
multi stage methodology called ‘reduction process’. We take the frequen-
cies of 2-state character patterns on the quartet as parameters and search
for solutions to the fit.

Keywords: closest tree method; Hadamard conjugation; phylogenetic
reconstruction; observed data fitting; reduction process; the Gröbner cover al-
gorithm.

Resumen

Nuestro objetivo es adaptar secuencias de caracteres de ADN con cua-
tro estados provenientes de tres especies a un árbol filogenético tipo trípode,
cuyo modelo evolutivo es Jukes-Cantor. Para ello, adaptamos el método
del árbol más cercano utilizado en el ajuste de secuencias de 2 estados
provenientes de cuatro especies a un cuarteto, donde los estados son puri-
nas y pirimidinas y el modelo evolutivo es CFN. La adaptación requiere
una metodología de múltiples etapas llamada ‘proceso de reducción’.
Tomamos las frecuencias de los patrones de caracteres de 2 estados en
el cuarteto como parámetros y buscamos soluciones para el ajuste.

Palabras clave: método del árbol más cercano; conjugación de Hadamard;
ajuste de datos observados; reconstrucción filogenética; proceso de reducción;
algoritmo Gröbner cover.

Mathematics Subject Classification: 92D15.

1 Introduction

Phylogenetic reconstruction aims at finding the evolutionary history of a group
of species. The ancestral relationships that give rise to the current species [9] can
be tracked through diagrams called phylogenetic trees [4], whose nodes have a
discrete random variable for observing the state (or character) of a genetic entity.
Between nodes there can also be given a substitution model for estimating the
probability of a state change.

A typical data set of departure in phylogenetic reconstruction is an alignment
of characters. If we fix the phylogenetic tree, the next step is data fitting.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 30(1): 71–87, Ene–Jun 2023



ADAPTATION OF THE CLOSEST TREE METHOD FOR A TWO STATE . . . 73

The main goal of [2] is to set conditions on the parameter space to fit the
observed sequences of DNA characters from three species to the phylogenetic
tree of figure 1 (rooted tripod tree), whose evolutionary model is Jukes-Cantor
(JC model), under the molecular clock condition. Substitution models on the
edges provide the parameters. However, their work limits to set just boundary
conditions on the parameter space, leaving for future research the question of
solutions in the interior, and if they exist, the uniqueness. The main goal of this
article is to return to these two questions applied to the tripod trees in figures 1
and 2, whose molecular substitution model is Jukes-Cantor with and without the
molecular clock condition, respectively.

1 2 3

e1 e2

e3

I

R

Figure 1: Example of a rooted tripod tree with edges e1, e2, e3.

The data fitting technique that the authors in [2] follow is maximum
likelihood estimation, but we use the version of the closest tree method that M.D.
Hendy shows in [6] after the intermediate process that is explained in section 3.

Our data fitting method is complementary to that in [8], where the authors
provide a version of the closest tree method for fitting the observed sequences of
DNA characters from a set of species to an unrooted phylogenetic tree
whose substitution model on the edges is a generalized version of Kimura
Three Parameters.

2 Preliminaries

2.1 Spectral sequence spectrum on Jukes-Cantor tripod trees

To each node on a tripod tree, we associate a 4-state discrete random variable for
observing adenines (A), guanines (G), cytosines (C) and thymines (T ).
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Figure 2: Example of a tripod tree with edges e1, e2, e3.

We classify three kind of substitutions:

1. transitions (A ↔ G, T ↔ C);

2. type I transversions (A ↔ T , G ↔ C);

3. type II transversions (A ↔ C, G ↔ T ).

To each edge ej on the tripod tree, we associate the expected number of
transitions, type I transversions and type II transversions as in [7]: let αj , βj
and γj be the rates of transitions, type I transversions and type II transversions
on ej , respectively. If tj is the time span, then qj(αj) = αjtj , qj(βj) = βjtj
and qj(γj) = γjtj are the expected number of transitions, type I transversions
and type II transversions, respectively. We call q-parameters to these expected
numbers of substitutions. If αj = βj = γj and the probabilities of state change
between nodes on ej is determined by the matrix Mj below, then the tripod tree
holds the Jukes-Cantor substitution model and is called a Jukes-Cantor tripod
tree (JC tripod tree). One Jukes-Cantor tripod tree having a unique, common rate
of substitution α = β = γ on the edges, shows the molecular clock condition
and is called a MC Jukes-Cantor tripod tree.

Mj =


A C G T

A 1 + 3 exp(−4αjtj) 1− exp(−4αjtj) 1− exp(−4αjtj) 1− exp(−4αjtj)
C 1− exp(−4αjtj) 1 + 3 exp(−4αjtj) 1− exp(−4αjtj) 1− exp(−4αjtj)
G 1− exp(−4αjtj) 1− exp(−4αjtj) 1 + 3 exp(−4αjtj) 1− exp(−4αjtj)
T 1− exp(−4αjtj) 1− exp(−4αjtj) 1− exp(−4αjtj) 1 + 3 exp(−4αjtj)

.

Let χ(j) = i mean that the j-th node a the tripod tree shows DNA charac-
ter i ∈ {A,G,C, T}. Then χ(j) → χ(k) stands for a substitution. In table 2,
we use the integers 0 through 3 to mean the kind of substitution: 0 for no substi-
tution; 1 for transitions; 2 for type I transversions; 3 for type II transversions.

An alignment of 4-state sequences 1, 2 and 3 is a 3-row list of DNA char-
acters A, C, G and T (see table 1 as an example). Each column observes
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Table 1: Alignment of three nucleotide sequences with ten sites.

Character 1 2 3 4 5 6 7 8 9 10
χ(1) C C A T T G A A G A
χ(2) A C A G T A G T G T
χ(3) A C A G C A A T G T

Table 2: Substitutions from the third row in table 1.

Substitution 1 2 3 4 5 6 7 8 9 10
χ(3) → χ(1) 3 0 0 3 1 1 0 T → A =2 0 2
χ(3) → χ(2) 0 0 0 0 1 0 1 T → T =0 0 0

DNA characters on leaves in the tripod tree at a site. These triplets are called
character patterns. Given the alignment, there is a frequency distribution of
character patterns. Characters in rows 1 and 2 in table 1 can be obtained as
substitutions from the character at the third row. Then pairs in columns of table
2 are called substitution patterns. Therefore there is also a frequency distribution
of substitution patterns.

Following [2], substitution patterns can be represented as pairs of
subsets of {1, 2}:

The ordered pair (A,B) is the substitution pattern such that

1. A\B : set of species obtained by transitions from the third row character.

2. B\A : set of species obtained by type I transversions from the third
row character.

3. A ∩ B : set of species obtained by type II transversions from the third
row character.

4. {1, 2}\(A ∪B) : set of species sharing the same third row character.

For example, substitution patterns in sites 1, 7 and 8 in table 2 are
represented as ({1}, {1}), ({2}, ∅) and (∅, {1}), respectively.

For the alignment of three species, there can be sixteen substitution patterns
at most. Their frequencies can be located within a 4 × 4 matrix, where index
row indicates the left entry of the ordered pair for the corresponding substitu-
tion pattern whereas column index indicates the right entry of the ordered pair,
according to the notation used in [2]. This matrix is called the Spectral
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Sequence Spectrum. The virtue of this matrix is that it can be computed in terms
of the q-parameters via Hadamard conjugation [7].

We show next the Spectral Sequence Spectrum for Jukes-Cantor tripod trees
and for MC Jukes-Cantor tripod trees as in [2]:

Spectral Sequence Spectrum, PJC , for a Jukes-Cantor tripod tree

PJC =


∅ {1} {2} {1, 2}

∅ a0 a1 a2 a3
{1} a1 a1 a4 a4
{2} a2 a4 a2 a4
{1, 2} a3 a4 a4 a3

, (1)
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with x = e−4q1 , y = e−4q2 and z = e−4q3 being the pathset variables as in [2].

Spectral Sequence Spectrum, PMCJC , for an MC Jukes-Cantor rooted
tripod tree

PMCJC =


∅ {1} {2} {1, 2}

∅ a0 a1 a1 a3
{1} a1 a1 a4 a4
{2} a1 a4 a1 a4
{1, 2} a3 a4 a4 a3

, (3)

where,
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with y = e−4q2 and z = e−4q3 being the pathset variables.

2.2 Closest tree method on a two state quartet

In 1989, M. D. Hendy introduced the closest tree method [6]. This is a method
for fitting a finite set of 2-state sequences (where purines and pyrimidines are the
states) to an unrooted phylogenetic tree under the CFN model. We restrict our
attention to the quartet of figure 3. To each node on the quartet, we associate
a two-state discrete random variable for observing purines (X) and pyrimidines
(Y ). We put emphasis only on the elements that we use in section 3.

1 4

I R

2 3

e1

e5

e4

e2

e3

Figure 3: An example of a quartet with edges e1 through e5.

To each edge ei on the quartet, we associate the expected number of
substitutions as in [6]: let λj be the rate of substitutions on ei. If ti is the
time span, then q′i = λti is the number of substitutions (or edge length).
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We fix a unique rate of substitutions, λ, for the edges on the quartet.
CFN model on the quartet implies stochastic matrices Nj , as below, for comput-
ing the probabilities of state change between nodes on the corresponding edges.

Nj =

( X Y

X
1+exp(−2q′j)

2

1−exp(−2q′j)

2

Y
1−exp(−2q′j)

2

1+exp(−2q′j)

2

)
.

An alignment of 2-state sequences 1, 2, 3 and 4 is a 4-row list of characters
X and Y . Each column is a sequence of purines and pyrimidines distributed at
leaves on the quartet. Each column indicates a different site. These sequences
are classyfied into 8 bipartitions: A1 = {1}, A2 = {1, 2}, A3 = {1, 3},
A4 = {1, 2, 3}, A5 = {1, 4}, A6 = {1, 2, 4}, A7 = {1, 3, 4} and
A8 = {1, 2, 3, 4}. Each of these bipartitions indicates which leaves on the quar-
tet share the same character on leaf 1. Given the alignmnet, there is a frequency
distribution of bipartitions that can be kept into the vector s⃗ = (s1, s2, . . . s8).
Let ρ be the vector (5) where H = (hm,i) is the Hadamard matrix (6) and the
superscript t stands for the transpose operation.

ρ = Hts⃗ t, (5)

where

H =



1 −1 −1 1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 −1 1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1
1 1 1 1 1 1 1 1


. (6)

For j in {1, 2, . . . 8} do

rj := −1

2
log(ρj). (7)

Formula (7) sums the edge lengths over non overlapping, connected paths
in the quartet of figure 3. For example, r6 = −1

2 log(ρ6) = q′2 + q′5 + q′4 and
r8 = −1

2 log(ρ8) = q′1 + q′2 + q′3 + q′4.
Equations (5) and (7) establish a one to one correspondence between vectors

s⃗ and r⃗.
A cut on ej produces the bipartition of those leaves to its side that includes

leaf 1. For example, a cut in e5 produces A2, a cut in e3 produces A6.
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Let ej ↔ Am mean this correspondence. Let K be the 8 × 5 matrix (8), with
entries ki,j =

1−hm,i

2 , where ej ↔ Am.

K =



0 0 0 0 0
1 1 0 0 0
1 0 1 0 1
0 1 1 0 1
1 0 0 1 1
0 1 0 1 1
0 0 1 1 0
1 1 1 1 0


. (8)

Let q⃗′ = (q′1, q
′
2, q

′
3, q

′
4, q

′
5) be the vector of edge lengths on the quartet.

The Moore-Penrose inverse K+ to K is:

K+ =


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0 1
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1
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1
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1
4

1
4 −1

6 −1
3

 . (9)

According to [6], it follows:

r⃗ = Kq⃗ t; (10)

q⃗ = K+r⃗ t. (11)

Given an observed vector of frequencies s⃗o of bipartitions A1 through A8

for the alignment of 2-state sequences 1, 2, 3 and 4, M. D. Hendy provides
in [6] a criterion for selecting the quartet of figure 3 as the ‘best fit’ tree: let
r⃗o be in corresponce to s⃗o according to the Equations (5) and (7). Let R be
the set of possible vectors r⃗ that can be derived from the quartet in agreement
to the Equations (5) and (7). Then KK+r⃗o is the closest point to r⃗o in R.
Said differently, the distance from r⃗o to R is ∥KK+r⃗o− r⃗o∥ (cf. [1]). In section
4, we do this and take the entries of s⃗o as parameters.

2.3 The Gröbner cover algorithm

A. Montes published in 2010 the Gröbner cover algorithm for analyzing
polynomial systems with parameters. A good reference for introducing
Gröbner bases is [3].
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We next give a short view of the Gröbner cover algorithm.
Let ā = {a1, a2, · · · , am} be a set of parameters and let Z = {z1, z2, · · · , zn}

be a set of variables. We define R[ā]R[Z] as the ring of polynomials with vari-
ables in Z and coefficients in R[ā].

Let {p1(ā, Z), p2(ā, Z), . . . , pr(ā, Z)} be a set of polynomials in R[ā]R[Z].
For each assignment of real values to the parameters,
ζā : ā → R, the goal is describing the complex algebraic variety V (Iζā) ⊂ Cn

of the ideal Iζā = < p1(ζā, Z), p2(ζā, Z), . . . pr(ζā, Z) >⊂ R[Z].
Let ≻Z be a monomial order for Z as in [3]. For lpp(Iζā), we mean the set of

leading power products associated to each polinomial in Iζā
with respect to ≻Z .

The Gröbner cover of Cm with respect to (≻Z , Iā) is a set of pairs {(S1, B1),
(S2, B2), · · · , (Sr, Br)} having the following properties:

• The sets Si are locally closed with respecto to the Zariski topology
(differences of closed sets), pairwise disjoint, whose union is Cm.
These sets are called segments.

• For any two distinct assignments ζā, ζ ′ā to the parameters, the sets of lead-
ing power products lpp(Iζā) and lpp(Iζ′ā) agree on each intersection
Rm ∩ Si for every i ∈ {1, 2, . . . r}.

• For each i ∈ {1, 2, . . . r}, Bi ⊂ O(Si)[X] is a finite, reduced Gröbner
bases over Si, where O(Si) is the ring of regular functions on the segment.

The Gröbner cover algorithm is implemented in Singular and is freely avail-
able in https://www.singular.uni-kl.de/. Gert’s book in [5] pro-
vides an accessible, full guide to the use of Singular in the context of
commutative algebra.

3 The reduction process on tripod trees

For phylogenetic trees whose nodes have a 4-state discrete random variable,
the reduction process consists in reading purines and pyrimidines instead of
adenines, citosines, guanines and thymines.
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In order to apply the closest tree method to a rooted tripod tree as that of
figure 1, whose nodes have a 4-state discrete variable, we insert a new edge
from its root R. In case of a tripod tree as that of figure 2, we could insert
a new edge starting from a middle point on the third edge e3. In either case,
we call the resulting phylogenetic tree as the tripod’s quartet extension. Then
we read purines (X) from the states A and G, and pyrimidines (Y ) from the
states C and T .

Lemma 1 Consider an alignment of 2-state sequences 1, 2, 3 and 4,
whose phylogenetic tree is the quartet of figure 3. By marginalizing the distribu-
tion frequencies of character patterns over the fourth leaf, we get the distribution
s′ : {X,Y }3 → [0, 1] of character patterns on the tripod component with leaves
1, 2 and 3. Let s⃗ = (s1, s2, . . . s8) be the vector of frequencies of bipartitions
associated to the given alignment. Then the following relations hold:

s4 + s8 = s′XXX + s′Y Y Y , (12)

s2 + s6 = s′XXY + s′Y Y X , (13)

s1 + s5 = s′XY Y + s′Y XX , (14)

s3 + s7 = s′XYX + s′Y XY . (15)

Proof. We explain just the equality (12). The rest of these follow similarly.
Bipartitions A2 = {1, 2} and A6 = {1, 2, 4} differ in the fourth leaf.

If χ(1) = X , then A2 observes XXY Y and A6 observes XXYX .
These two events are considered by s′XXY . If χ(1) = Y , then A2 observes
Y Y XX and A6 observes Y Y XY . These two events are considered by s′Y Y X .

4 Data fitting

Proposition 1 Let s⃗o be the observed vector of frequencies of bipartitions for
an alignment of 2-state sequences as it was considered at the end
of section 2.2. Take these frequencies as parameters. Let r⃗o be in correspon-
dence to s⃗o according to the Equations (5) and (7). Let R be the set of vectors
r⃗ derived from the quartet of figure 3. Express r⃗o in terms of the parameters
according to the Equations (5) and (7). Then there exist non-extreme conditions
on the parameters guarantying a best fit to the quartet.
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Proof. We do ρ = Hts⃗o
t as in (5) and get linear combinations

of the parameters. We take logarithms as in (7) for each index j in ρ and get
the vector r⃗o. We equate to zero each term in KK+r⃗ − r⃗ to establish con-
ditions on the parameters for selecting the quartet of figure 3 as the best fit.
We reduce each equation involving more than one logarithm to an equation with
just one logarithm. We exponentiate every resulting equation and look for an
appropriate solution to the given system in which there is no extreme assump-
tions as when two or more different parameters equal to each other or as when
some parameters equal to zero. The conditioning equations on the parameters
are the following:

−(s3 + s4 + s5 + s6)(s4 − s6)s1 = s23s4 + s23s8 + s3s
2
4 + s3s4s5+

s3s4s6 + s3s4s8 − s3s5s6 + s3s6s8 − s4s5s6 − s4s5s8−
s25s6 − s25s8 − s5s

2
6 − s5s6s8 − s3s4 + s5s6, (16)

−(s3 + s4 + s5 + s6)s2 =s3s4 + s3s6 + s3s8 + s24 + s4s5 + 2s4s6+

s4s8 + s5s6 + s5s8 + s26 + s6s8 − s4 − s6, (17)

(s3 + s4 + s5 + s6)(s4 − s6)s7 = s23s6 + s23s8 − s3s4s5 + s3s4s6+

s3s4s8 + s3s5s6+s3s
2
6 + s3s6s8 − s24s5 − s4s

2
5 − s4s5s6−

s4s5s8 − s25s8 − s5s6s8 − s3s6 + s4s5. (18)

Proposition 2 Let Ω be an alignment of 4-state sequences 1, 2, 3 and 4;
and let ΩQ be the 2-state alignment after the reduction process. Assume for
ΩQ the quartet of figure 3 as a model of evolution. Let s′ be the distribution
of frequencies for the quartet’s tripod component as in Lemma 1. Let s⃗ =
(s1, s2, . . . s8) be the vector of frequencies of bipartitions on ΩQ. Assume the
conclusions of Lemma 1. Let P be the Spectral Sequence Spectrum for the given
tripod component. Then the following conditions are true:

• s′XXX + s′Y Y Y = sum of ∅-column entries in P ;

• s′XY Y + s′Y XX = sum of {1}-column entries in P ;
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• s′XYX + s′Y XY = sum of {2}-column entries in P ;

• s′XXY + s′Y Y X = sum of {1, 2}-column entries in P .

Proof. We just prove the first equality as the others follow similarly.
Character patterns [AAA]t, [AAG]t, [AGA]t, [AGG]t, [GAA]t, [GAG]t,

[GGA]t, [GGG]t reduce to [XXX]t; character patterns [CCC]t, [CCT ]t,
[CTC]t, [CTT ]t, [TCC]t, [TCT ]t, [TTC]t, [TTT ]t reduce to [Y Y Y ]t.

All these character patterns distribute on the ∅-column of matrix P :

• (∅, ∅) = {[AAA]t, [CCC]t, [GGG]t, [TTT ]t};

• ({1}, ∅) = {[AGG]t, [GAA]t, [CTT ]t, [TCC]t};

• ({2}, ∅) = {[AGA]t, [GAG]t, [CTC]t, [TCT ]t};

• ({1, 2}, ∅) = {[AAG]t, [GGA]t, [CCT ]t, [TTC]t}.

Then, the probability of occurrence of the event {[XXX]t, [Y Y Y ]t} at leaves
on the tripod component is the sum of ∅-column entries in P .

4.1 Jukes-Cantor tripod tree

Corolary 1 In view of Proposition 2 and the entries in matrix (1), the equalities
in Lemma 1 become

1

4
+

1

4
yz +

1

4
xz +

1

4
xy − (s4 + s8) = 0;

1

4
− 1

4
yz − 1

4
xz +

1

4
xy − (s2 + s6) = 0; (19)

1

4
+

1

4
yz − 1

4
xz − 1

4
xy − (s1 + s5) = 0;

1

4
− 1

4
yz +

1

4
xz − 1

4
xy − (s3 + s7) = 0.

Theorem 3 The Gröbner cover algorithm applied to the System (19), where
s1, s2, . . . , s8 are parameters satisfying relations (16) through (18) and x, y, z
are the pathset variables, decomposes the parameter space R8 into segments
such that just one of them is biologically meaningful, for which the correspond-
ing canonical Gröbner bases has at most a unique solution (x, y, z) with
0 < x < 1, 0 < y < 1, 0 < z < 1.
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Proof. The Gröbner cover algorithm produces the unique meaningful segment
C11 = R8 \ {V (2s3s4 + 2s3s8 + 2s24 + 2s4s5 + 2s4s6 + 2s4s8 − s4 + 2s5s8 +
2s6s8 − s6) ∪ V (s4 − s6) ∪ V (s3 − s4 − s5 + s6) ∪ V (s3 + s4 − s5 − s6) ∪
V (s3 − s4 + s5 − s6)∪V (s3 + s4 + s5 + s6)}, whose Canonical gröbner bases
has the following generators:

1. g11 = A1A2y +B1B2z,

2. g12 = A2C1x−B1B2z,

3. g13 = B1
2B2E1(z)

2 −A1A2
2C1,

where A1 = −s6+ s3+ s4− s5, A2 = 2s3s4+2s3s8+2s24+2s4s5+2s4s6+
2s4s8 + 2s5s8 + 2s6s8 − s4 − s6, B1 = s4 − s6, B2 = −s4 + s3 + s5 − s6,
C1 = s6 + s3 − s4 − s5 and E1 = s3 + s4 + s5 + s6.

As in section 2.1, x = exp(−4q1), y = exp(−4q2) and z = exp(−4q3) are
the pathset variables, where q1, q2, q3 are the q-parameters for the
Jukes-Cantor tripod tree of figure 2. It makes sense for them to archive the
restrictions 0 < x < 1, 0 < y < 1, 0 < z < 1.

From the generator g13, it is clear that condition 0 < z2 < 1 occurs
in four cases:

1. A1 > 0, B2 > 0, C1 > 0 and B1
2B2E1 −A1A2

2C1 > 0;

2. A1 > 0, B2 < 0, C1 < 0 and −B1
2B2E1 +A1A2

2C1 > 0;

3. A1 < 0, B2 > 0, C1 < 0 and B1
2B2E1 −A1A2

2C1 > 0;

4. A1 < 0, B2 < 0, C1 > 0 and −B1
2B2E1 +A1A2

2C1 > 0.

From the generator g12, 0 < x2 = A1B2
C1E1

< 1 if C1E1 − A1B2 > 0 in
correspondence to the previous cases first and fourth or if −C1E1 + A1B2 > 0
in correspondence to the cases second and third, respectively.

From the generator g11, 0 < y2 = B2C1
A1E1

< 1 if A1E1 − B2C1 > 0 in
correspondence to the previous cases first and second or if −A1E1 +B2C1 > 0
in correspondence to the cases third and fourth, respectively.
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4.2 MC Jukes-Cantor rooted tripod tree

Corolary 2 In view of Proposition 2 and the entries in matrix (3), equalities in
Lemma 1 become

1

4
+

1

2
yz +

1

4
y2 − (s4 + s8) = 0;

1

4
− 1

2
yz +

1

4
y2 − (s2 + s6) = 0; (20)

1

4
− 1

4
y2 − (s1 + s5) = 0;

1

4
− 1

4
y2 − (s3 + s7) = 0.

Theorem 4 The Gröbner cover algorithm applied to the System (20), where
s1, s2, . . . , s8 are parameters satisfying all relations (16) through (18) and y, z
are variables, decomposes the parameter space R8 into segments such that just
one of them is biologically meaningful, for which the corresponding canonical
Gröbner bases has at most a unique solution (y, z) with 0 < z < y < 1.

Proof. The Gröbner cover algorithm produces the segment C21 = V (s3 − s5) \
{[V (2s24 +4s4s5 +2s4s6 +2s4s8 − s4 +4s5s8 +2s6s8 − s6)∩V (s3 − s5)]∪
[V (s4 − 2s5 + s6) ∩ V (s3 − s5)] ∪ [V (s4 + 2s5 + s6) ∩ V (s3 − s5)]}, whose
canonical Gröbner basis has the following generators:

1. g21 = Ay +Bz,

2. g22 = −BCz2 −D2,

where A = 2s24 + 4s4s5 + 2s4s6 + 2s4s8 − s4 + 4s5s8 + 2s6s8 − s6, B =
−s4 + 2s5 − s6, C = 2s5 + s4 + s6 and D = 2s24 + 4s4s5 + 2s4s6 + 2s4s8 +
4s5s8 + 2s6s8 − s4 − s6.

As in section 2.1, y = exp(−4q2) and z = exp(−4q3) are the pathset vari-
ables, where q2, q3 are the q-parameters for the MC Jukes-Cantor rooted tripod
tree of figure 1.

From the generator g22 it is clear that condition 0 < z2 occurs if B < 0.
To guarantee z2 < 1 it has to be −BC −D2 > 0. Similarly, A > 0 and B < 0
imply 0 < y. Condition BD2 +A2C > 0 implies y < 1.

Finally, condition 0 < z < y < 1 is important to guarantee q1 = q2 < q3.
This last condition holds when −B −A > 0.
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5 Conclusions

Theorems 3 and 4 show that, when the fitting procedure is applied sucessfully
to the observed sequences of DNA characters from 3 species to tripod trees
as those in figures 2 and 1, respectively, the solutions are unique. More over,
these solutions are obtained for non extreme values of s1, s2, . . . s8 coming from
the tripod’s quartet extension. This way we deal successfully with the main goal
of this article, but partially, because we made use of a different data technique as
the one in [2], and we tracked other parameters.
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