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Abstract

Despite their widespread use in advanced analytical and numerical tech-
niques, gradient field methods are often underrepresented in the foundational
training of economists and social scientists. As machine learning and sophis-
ticated analytical and numerical approaches gain traction, the importance
of gradient methods in optimization processes becomes increasingly apparent.
This oversight in academic and practical toolsets is suboptimal. This paper
aims to address this gap by introducing gradient field methods both intu-
itively and rigorously, situating them within the context of problems com-
monly encountered by economists and social scientists, with a particular
focus on equality constrained optimization.

Keywords: minimization with constraints; Lagrange multipliers; gradient fields algo-
rithms.

Resumen

A pesar de su uso generalizado en técnicas anaĺıticas y numéricas avan-
zadas, los métodos de campo de gradientes suelen estar subrepresentados
en la formación básica de economistas y cient́ıficos sociales. A medida que
el aprendizaje automático y los enfoques anaĺıticos y numéricos sofisticados
ganan terreno, la importancia de los métodos de gradiente en los procesos de
optimización se vuelve cada vez más evidente. Esta falta en las herramien-
tas académicas y prácticas es subóptima. Este art́ıculo tiene como objetivo
abordar esta brecha introduciendo los métodos de campo de gradientes tanto
de manera intuitiva como rigurosa, situándolos en el contexto de problemas
comúnmente encontrados por economistas y cient́ıficos sociales, con un en-
foque particular en la optimización con restricciones de igualdad.

Palabras clave: minimización con restricciones; multiplicadores de Lagrange; algoritmos

con campos de gradientes.

Mathematics Subject Classification: Primary 97M40; Secondary 49-01, 49K05,
49K10, 49K21, 97G70, 97H60, 97I99, 97M70, 97P99.

1. Introduction

Central to economics lies a foundational problem: the rational choice between
two goods given a limited budget. This quintessential economic dilemma pro-
vides an ideal backdrop for introducing gradient-based methods, especially as they
apply to constrained optimization problems. Not only are these methods versa-
tile, easily generalizing to situations with multiple variables and constraints, but
they also retain their intuitive appeal across these complexities when presented
judiciously. Beyond the inherent significance of constrained optimization, these
gradient-based methods underpin the surging machine learning revolution with
far-reaching societal implications.

Within the broader scope of social sciences, optimization is not merely an
exercise in mastering the procedural steps. Rather, it delves deeper into compre-
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hending the intricacies of decision-making amidst resource constraints—a perva-
sive challenge confronting governments, organizations, and individuals. Regret-
tably, traditional pedagogical approaches, as showcased by texts like [9], [13], and
[24], just to name three, often convey these concepts in a rather prescriptive and
mechanistic manner.

The traditional approach to introducing optimization not only potentially ob-
structs a richer understanding but also forgoes an excellent opportunity to ac-
quaint economics and social science students with state-of-the-art optimization
methods pivotal in today’s machine learning landscape. These methods are well-
documented in classic textbooks such as [4], [5], [6], [7], [11], and [20], with related
optimization techniques detailed in [10], [15], and [23].

Given this context, the primary objective of this paper is to recalibrate this
perspective. We aspire to provide students and practitioners with an intuitive
grasp of optimization under constraints. In doing so, our aim is to endow them with
a toolkit that not only bridges the divide between classical mathematical economics
concepts and contemporary methodologies but also aligns with the ongoing shift
towards data-centric decision-making and machine learning, as highlighted by [1],
[2], [3], [8], [12], [16], [18], [19], [21], [22], [25] among many others.

In this work, we illustrate the prowess of gradient field methods within two spe-
cific realms: the unconstrained gradient descent minimization and the quintessen-
tial Lagrange multiplier technique for optimization challenges bound by equality
constraints. The former, especially its stochastic variants, arguably constitutes the
primary utilization of gradient field methods in contemporary machine learning.
Conversely, the latter boasts a dual advantage. On one side, students often al-
ready possess familiarity with its mechanics, and on the other, it tends to be
presented in textbooks in a rather prescriptive manner, justified predominantly
by its ability to generate correct equations. By emphasizing an intuitive compre-
hension of the Lagrange multiplier technique, we underscore its applicability and
relevance, especially in high-dimensional problems pivotal in advanced machine
learning. Furthermore, this method offers a simpler alternative to the Karush-
Kuhn-Tucker conditions associated with inequality constraints, even though the
core principles rooted in gradient fields remain essentially the same [14], [17].

To achieve these objectives, this paper will follow a methodical trajectory, be-
ginning with a concise overview of optimization under equality constraints. This
will pave the way for an in-depth, yet intuitively grasped, exposition on the gra-
dient “field” – a pivotal mathematical instrument that has, regrettably, been over-
shadowed in the foundational learning of economics and social science students.
The primary thrust of our presentation will be geared towards cultivating a pro-
found, intuitive grasp of the core principles.

Much as in unconstrained optimization, where first derivatives are rendered null
to pinpoint critical points for both maximization and minimization tasks, the same
happens in constrained optimization. While higher order derivatives are typically
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employed to differentiate between constrained maximization, minimization, and
general critical points, our current analysis will limit itself to first-order conditions
exclusively. The reason of this approach is our intent to familiarize readers to
gradient methods, thereby sidestepping an intricate exploration of higher-order
derivatives at this juncture.

The subsequent sections of this paper are systematically organized to facilitate
understanding. Section 2 provides an overview of conventional techniques deployed
to address optimization with equality constraints. We’ll explore direct solutions
in 2.1, graphical methods in 2.2, and the customary approach to the Lagrange
multipliers method in 2.3. Section 3 presents the prerequisites concepts of orthog-
onality and orthonormal bases in vector spaces in 3.1, and the gradient field and
its relationship with level curves and hypersurfaces in 3.2. Section 4 elaborates on
the utility of the gradient field in automating the detection of local optima. We
emphasize its centrality, especially of its stochastic version, during the machine
learning training phase—even in sophisticated neural network configurations. Sec-
tion 5 shows how gradients illuminate, and generalizes the graphical intuition, of
the often mechanistic Lagrange multiplier method. First in problems with two
variables and a single constraint in 5.1, then in problems with n-variables with a
single constraint in 5.2, and finally in multi-dimensional, n-variable systems with
several constraints in 5.3. Section 6 presents two numerical algorithms to find local
optima with constraints. Section 7 finishes our discussion, providing a synthesis
and conclusion of our exploration. Through this structured walkthrough, we aim to
offer readers an intuitive and comprehensive understanding of our subject matter.

2. Standard ways of solving optimization problems with equality
constraints

The basic problem of maximizing utility with a budget constraint is this: there
are two goods, say food and clothes, a unit of food costs P f and a unit of clothes
costs Pc, the budget is i, how much can the agent buy of each good so as to
maximize her utility?

Suppose the utility function is:

U( f , c) = f αcβ, (2.1)

where f represents the units of food and c the units of clothes that the person
consumes. We assume that f and c can be any real, positive number. The expo-
nents α and β can also be any positive number in principle. However if we assume
that they are numbers between zero and one, we have the more or less standard
situation for normal goods in which, on the one hand, the more the better, and
on the other, the more the person consumes of one item, the less utility she gets
from an additional unit of that same item.
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Assume she has i dollars to spend on food and clothing, and define the budget
function I of f units of food and c units of clothes as:

I( f , c) = f P f + cPc. (2.2)

We are modeling a one-period problem and we assume that the agent does not
get any utility from keeping unspent money, therefore we will choose f and c such
that I( f , c) = i.

The problem then is to choose ( f , c) so as to maximize the utility (2.1) subject
to the budget constraint:

max
( f ,c)

U( f , c), (2.3)

I( f , c) = i. (2.4)

Mathematically, problem (2.3-2.4) is a simple two dimensional problem of max-
imization with constraints, and it can be solved in many different ways. In the
rest of this section we present three standard ways of solving it. Each of these
methods has its merits and can be applied effectively under certain conditions.
However, they also have limitations in terms of complexity and intuitive appeal.
Understanding these methods, and their shortcomings, sets the stage for the de-
velopment of a more intuitive approach to constrained optimization problems - a
gradient-based approach that is at the heart of this paper.

2.1. Direct solution.

The direct way, given the particular form of the constraint, is to use (2.2) and
(2.4) to find an explicit expression of c in terms of f :

c = −
P f

Pc
f +

i
Pc
. (2.5)

Replacing (2.5) in (2.1) and rearranging:

U( f , c( f )) =
(

P f

Pc

)β
f α

(
− f +

i
P f

)β
, (2.6)

we end up with a trivial one-dimensional maximization problem. In Figure 1,
U( f , c( f )) is plotted for α = β = 1/2, P f = 1, Pc = 2, I = 10. The symmetry of
the graph makes clear that the maximization happens at f = 5. (2.5) then implies
that c = 2.5, and of course I = 5 × 1 + 2.5 × 2 = 10, satisfying the constraint.

In general, the maximization of U( f , c( f )), where c( f ) is an explicitly known
function of f , corresponds to the value of f such that dU/d f = 0:

dU( f , c( f ))
d f

=
∂U( f , c)
∂ f

+
∂U( f , c)
∂c

dc
d f
= 0. (2.7)

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 31(2): 195–229, Jul – Dec 2024



200 s. a. pernice

Figure 1: U( f , c( f )) in (2.6) for α = β = 1/2, P f = 1, Pc = 2, I = 10.

Given equation (2.5), we deduce that dc/d f = −P f /Pc. At the point of maximal
utility, relationship (2.7) transforms into:

∂U( f , c)
∂ f

−
∂U( f , c)
∂c

P f

Pc
= 0. (2.8)

Reconfiguring this equation, we derive:

∂U( f ,c)
∂ f

P f
=

∂U( f ,c)
∂c

Pc
. (2.9)

The implication of equation (2.9) is that, at the optimal utility juncture, the
marginal utility per unit of expenditure remains consistent across all goods.
In essence, if an individual reaches peak utility, the incremental joy or satisfaction
they derive from allocating an additional dollar towards food precisely mirrors the
joy from directing that dollar towards clothes.

Another representation, which we will refer to in subsequent sections, is de-
picted as:

∂U( f ,c)
∂ f

∂U( f ,c)
∂c

=
P f

Pc
. (2.10)

Equation (2.10) encapsulates the idea of the “marginal rate of substitution” in
the context of prices. In essence, at the utility optimum, the ratio between the
marginal utility derived from food and the marginal utility from clothes aligns
perfectly with the ratio between the price of food and the price of clothes.

The direct method, employed for solving maximization problems with con-
straints, has the merit of necessitating only a basic understanding of calculus.
However, its utility diminishes when grappling with problems encompassing more
than two goods. This is due to the increasing challenges in graphical representa-
tion and the complications arising in resolving constraints, often diverging from
the straightforward nature of equation (2.5).
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2.2. Graphical method for maximization with constraints.

In the context of elementary two-dimensional problems, such as those described
by equations (2.3-2.4), a graphical approach frequently offers an intuitive insight
into the crux of the issue, facilitating an intuitive derivation of the pertinent equa-
tions. This section delves into this graphical technique, a staple in foundational
economic textbooks, to shed light on maximization with constraints.

Figure 2: 3-D representation of the util-
ity function (2.1), α = β = 1/2, P f = 1,
Pc = 2, I = 10.

Figure 3: 3-D representation of the bud-
get function (2.2), α = β = 1/2, P f = 1,
Pc = 2, I = 10.

Figure 4: Utility function (2.1) level
curves.

Figure 5: Budget function (2.2) level
curves.

The utility function (2.1) and the budget function (2.2) can be portrayed in
three dimensions, as in Figures 2-3, or in two dimensions, using their level curves,
as in Figures 4-51. The level curves representation proves particularly insightful
in this context.

1The level curves of a function G( f , c) represent the curves in the ( f , c) plane defined implicitly
by the equation G( f , c) = g, where g is a constant.
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Comparing Figure 2 with Figure 4, and Figure 3 with Figure 5, it is apparent
that in both cases, as we move in the up-right direction, the level curves denote
increasing utility (Figure 4) and budget (Figure 5), respectively.

Let’s recall the level curve for the budget function (2.2) corresponding to
I( f , c) = 10 discussed in the previous subsection. We determined that utility is max-
imized for f = 5 and c = 5/2, resulting in a utility U =

√
5 × 5/2 = 5/

√
2. Hence,

the corresponding budget and utility curves in the ( f , c) plane are, respectively:

2 × c + 1 × f = 10 ⇒ c = −
1
2

f + 5, (2.11)√
f c =

5
√

2
⇒ c =

25
2

1
f
. (2.12)

In Figure 6, three utility level curves (U = 5/
√

2 − 0.5, U = 5/
√

2, and U =
5/
√

2 + 0.5), along with the budget line I = 10, are depicted in the ( f , c) plane.

Figure 6: U = 5/
√

2 − 0.5 (blue), U = 5/
√

2 (purple), U = 5/
√

2 + 0.5 (yellow) and I = 10
(green).

Upon examining Figure 6, given the convex form of the level curves of the
utility function, it’s evident that the maximization of utility constrained by the
budget will occur at the point on the ( f , c) plane where the budget line is tangent
to a level curve of the utility function, intercepting it exactly once.

If the level curve of the utility function intercepts the budget line at two points,
as exemplified by the blue curve, we can enhance utility by opting for higher level
curves. If it doesn’t intersect the budget line, as with the yellow curve, it isn’t
compatible with our budget constraint. Hence, the optimal scenario is the level
curve of the utility function intercepting the budget line only once, as demonstrated
by the purple curve. Given that the level curves are smooth, at this point, the
budget line must align with the tangent line of the utility function’s level curve.
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Now let’s convert this graphical insight into mathematical equations. The
level curves of the utility function in the ( f , c) plane represent curves c( f ) implicitly
defined by the equation U( f , c( f )) = u, where u is a constant. According to the rules
of differentiation for implicit functions, the slope dc/d f of such a curve is given by:

dc
d f
= −

∂U
∂ f
∂U
∂c

. (2.13)

The graphical interpretation suggests that at the optimal point, this slope
matches the slope of the budget line (2.5),

dc
d f
= −

P f

Pc
. (2.14)

By equating equations (2.13) and (2.14), we deduce:

∂U
∂ f
∂U
∂c

=
P f

Pc
. (2.15)

In Section 2.1, we reduced the problem to a one-dimensional optimization sce-
nario, which is addressed by equation (2.10). The graphical method employed in
this section yields equation (2.15). At first glance, this appears analogous to (2.10).
However, it’s important to note that (2.15) resides within the two-dimensional ( f , c)
plane, thus requiring an extra equation to conclusively determine a solution.

To discover this secondary equation, let’s reconsider Figures 4-5 and 6. All
level lines of the budget function (represented by (2.5) for varying i values) share
the same slope −P f /Pc (see Figure 5). As such, the right side of (2.15) does not
uniquely specify our particular budget constraint. From this, it becomes evident
that the second equation should be the explicit budget constraint itself.

Note that every level curve of the utility function (as shown in Figure 4) has a
point where the tangent line bears a slope of −P f /Pc. Therefore, equation (2.15)
defines a curve c∗( f ), where the points signify the optimal utility for all potential
budget values. To pinpoint the optimal budget, we must identify where this curve
intersects with our budget line.

Hence, our constrained maximization problem is resolved by finding the solu-
tion to a pair of equations:

∂U
∂ f
∂U
∂c

=
P f

Pc
, (2.16)

f P f + cPc = i. (2.17)

Equation (2.17) and the right-hand side of equation (2.16) explicitly rely on the
specific structure of the budget function (2.2). However, the concept that the level
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curves cU( f ) of the function U( f , c) being maximized and the level curves cI( f ) of
the constraining function I( f , c) should be tangent at the constrained optimum is
more general than our particular example might suggest. It applies to generic,
smooth functions U( f , c) and generic, smooth constraints I( f , c) = i.

Let’s consider a new problem with the functions U and I given by

max
( f ,c)

U =
√

u f , (2.18)

I( f , c) =
f 2

5
√

2
+ c =

15

2
√

2
. (2.19)

In this case, U is the same as before, but we treat it as a generic function to be
maximized under the generic constraint I( f , c) = 15/(2

√
2). Figure 7 illustrates the

same level curves of U( f , c) (blue, purple, and yellow) as shown in Figure 6, along

with the green curve corresponding to the level curve I( f , c) = 15/(2
√

2).

Figure 7: U = 5/
√

2 − 0.5 (blue), U = 5/
√

2 (purple), U = 5/
√

2 + 0.5 (yellow) and
I = 15/(2

√
2) given in equation (2.19).

It’s evident that the point of tangency between the purple level curve of U and
the green level curve of I, which has coordinates

f = c =
5
√

2
, (2.20)

represents the maximum of U subject to the constraint I( f , c) = 15/(2
√

2).
As we move along the allowed curve c = − f 2/(5

√
2) + 15/(2

√
2) from left to right,

the values of U increase up to the tangent point in (2.20), after which they start
to decrease. Since U and I are smooth functions around the tangent point, this
implies that U should not change in value (to first order) under small enough
displacements along the level curve of I at that point. This means that small
displacements along the level curve of I at the tangent point are also along a level
curve of U, indicating that the level curves of I and U coincide at the tangent point.
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We now need to generalize the right-hand side of (2.16) to include the slope
of a generic constraint given implicitly by the level curve I( f , c) = i of a function
I( f , c). But we know from (2.13) that the slope of any level curve cI( f ) defined
implicitly by the function I( f , c) is given by

dcI

d f
= −

∂I
∂ f
∂I
∂c

. (2.21)

Thus, the generalization of (2.16) is

∂U
∂ f
∂U
∂c

=

∂I
∂ f
∂I
∂c

. (2.22)

The generalization of equation (2.17) is as necessary in the generic case as
it was in the specific one. The single equation (2.22), with two variables f and
c, can’t pinpoint a unique solution. Therefore, we explicitly need to impose the
equation I( f , c) = i, for the value i corresponding to our constraint. Thus, the
generalization of the system (2.16-2.17) is

∂U
∂ f
∂U
∂c

=

∂I
∂ f
∂I
∂c

, (2.23)

I( f , c) = i. (2.24)

The graphical method discussed in this section holds an advantage due to
its intuitive nature. However, in its current form, it does not generalize to higher,
arbitrary dimensions, where we can no longer“visualize”the problem. Nonetheless,
as we will delve into in Section 5, the introduction of some mathematical concepts,
often not covered in typical courses for economists and other social scientists, will
allow us to extend our intuition to any number of dimensions.

2.3. The Lagrange multipliers method: Standard treatment.

The two methods we’ve discussed thus far struggle to generalize to multiple
dimensions and constraints. It so happens that the most critical economic ap-
plications involving maximization with constraints typically encompass many di-
mensions and constraints. Thus, we’ll introduce a method conceived by the Italian
mathematician Joseph-Louis Lagrange (born on January 25, 1736), which effec-
tively generalizes to multiple dimensions and constraints.

Let’s consider the function:

L( f , c, λ) = U( f , c) − λ(I( f , c) − i), (2.25)
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where λ is a new variable, termed the Lagrange multiplier. We aim to optimize L
concerning the three variables f , c, and λ:

∂L
∂ f

=
∂U
∂ f
− λ
∂I
∂ f
= 0, (2.26)

∂L
∂c

=
∂U
∂c
− λ
∂I
∂c
= 0, (2.27)

∂L
∂λ

= I( f , c) − i = 0. (2.28)

These are three equations with three unknowns. In all but special cases, there
will be isolated solutions. The solutions for f and c correspond to the optimum
of U( f , c) under the constraint I( f , c) = i. To see this, simply shift the λ term in
(2.26) and (2.27) to the right, and divide (2.26) by (2.27), giving us (2.23). And
(2.28) is identical to (2.24).

This method reproduces the correct equations and readily generalizes to mul-
tiple dimensions and constraints, as we’ll explore later. While standard textbooks
often present and justify this method in a formal manner—primarily noting that
it does reproduce the correct equations for simple problems, just as we’ve demon-
strated—they seldom elaborate on why it works or explain the necessity of the
additional λ variable.

In the remainder of this paper, we aim to introduce the concept of gradient
field, which among other things will help us fill the Lagrange multipliers method
with the same intuitive appeal as the graphical method discussed in Section 2.2.
Furthermore, with a touch of abstraction, we will extend this geometric intuition
to multiple dimensions, even where traditional visualization is virtually impossible.

Throughout the subsequent sections of this paper, our primary objective is to
introduce the concept of the gradient field. This will, in turn, enrich the Lagrange
multipliers method with an intuitive clarity akin to the graphical approach de-
lineated in Section 2.2. Moreover, by incorporating a modicum of abstraction,
we aim to extrapolate this geometric intuition to multi-dimensional and multi
constraints contexts, even in instances where conventional visual representation is
inherently unfeasible.

3. Some mathematical background

To realize the objectives of this paper, it is imperative to understand the no-
tions of orthogonality, basis vectors, and gradients. Although often given cursory
treatment in many standard textbooks tailored for economists and social scientists
(gradients in particular), these topics carry profound importance across various do-
mains, notably in machine learning and data analysis. This section aims to offer
a succinct overview of these fundamental concepts.

In Section 2, we adopted the symbols f (for food) and c (for clothes) as our
independent variables, serving to contextualize the archetypical economic problem
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delineated therein. Moving forward, we will transition to the more generic notation
x1, x2, . . . , xn when referencing independent variables, barring specific examples.
Such a shift will facilitate the broadened application of the concepts and results
to a wide range of economic and mathematical problems.

3.1. Orthogonality and orthonormal basis.

Let’s consider two two-dimensional vectors (represented in bold typeface):

a =
(

a1
a2

)
, b =

(
b1
b2

)
. (3.1)

When plotting these vectors on a two-dimensional plane, it is easy to visually
check if they are perpendicular, as their angle can be 90◦ or 270◦. However,
determining perpendicularity becomes more challenging as the vectors involve
higher dimensions. Thankfully, we can employ an accessible algebraic structure to
automate this determination, and we will refer to this concept as “orthogonality”.

The scalar product (or “dot product”) of two vectors, denoted as a ·b, is defined
as the sum of the products of their corresponding coordinates. For the vectors in
(3.1), it can be expressed as:

a · b = a1b1 + a2b2. (3.2)

This definition straightforwardly extends to two n-dimensional vectors as follows:

a · b =
n∑

i=1

aibi. (3.3)

Now, consider the two standard vectors ê1 = (1, 0) and ê2 = (0, 1). These vectors
are orthogonal to each other and have unit length. Correspondingly:

ê1 · ê1 = 1 × 1 + 0 × 0 = 1, ê2 · ê2 = 0 × 0 + 1 × 1 = 1, (3.4)

and
ê1 · ê2 = 1 × 0 + 0 × 1 = 0. (3.5)

Equation (3.4) is not a coincidence, the scalar product of any vector with itself
equals the square of its length, which we denote as |a|2:

a · a = |a|2, (3.6)

and (3.5) is not a coincidence either, the scalar product of two vectors equals zero if
and only if they are orthogonal. This algebraic generalization captures the notion
of orthogonality we discussed earlier.

Additionally, for any two vectors a and b:

a · b = |a||b| cos θ, (3.7)

where θ is the angle between them. Since −1 ≤ cos θ ≤ 1, fixing the lengths of the
vectors |a| and |b|, we can observe the following:
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1. The maximum value of a ·b = |a||b| is achieved when θ = 0 (they are aligned).

2. The minimum value of a · b = −|a||b| occurs when θ = 180◦ (they are anti-
aligned).

3. a · b = 0 when θ = 90◦ or θ = 270◦, indicating orthogonality.

The notions of alignment, anti-alignment, orthogonality, or, in general, the angle
θ between two vectors is generalized and automated by (3.7) for any dimension of
the underlying vector space.

In an n-dimensional vector space, any set of n linearly independent vectors {vi},
i = 1, . . . , n, forms a basis, and any vector w can be uniquely expressed in this basis
as

w =
n∑

i=1

wivi, (3.8)

where the numbers wi are the “coordinates” of w in the basis {vi}.

The basis vi is called “orthonormal” if the basis vectors are orthogonal to each
other and have unit length:

vi · v j =

0 if i , j,
1 if i = j.

(3.9)

From (3.8), (3.9), and the linearity of the scalar product, it follows that if the basis
is orthonormal, the ith coordinate of a vector w in this basis is given by:

wi = vi · w. (3.10)

This generalizes the standard notion of, for example, the vector w = (2, 3) having a
coordinate “2” along the basis vector ê1 = (1, 0) and coordinate “3” along the basis
vector ê2 = (0, 1), as clearly ê1 · w = 2 and ê2 · w = 3.

3.2. Gradient and level curves and hypersurfaces.

The “gradient” of a sufficiently smooth function of n variables U(x1, . . . , xn),
denoted by ∇⃗U, is a vector “field” defined as:

∇⃗U(x1, . . . , xn) =


∂U
∂x1
...
∂U
∂xn

 . (3.11)

In essence, the ith component of the vector ∇⃗U at the point (x1, . . . , xn) represents
the ith derivative of U evaluated at that point. Normally we think of vectors as
having a common origin, associated with the zero vector. We use the term “vector
field” rather than the standard “vector space”, when there is a vector associated
with each point in (x1, x2, . . . , xn), as is the case in (3.11).
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For instance, consider the function U(x1, x2) = 50−(x2
1+ x2

2), its level curves, and
the corresponding implicit curves in the (x1, x2) plane, as illustrated in Figure 8.

Figure 8: U(x1, x2) = 50 − (x2
1 + x2

2) and its level curves U(x1, x2) = u, with u = 46, 41, 34, 25.
In the plane ( f , c), the curves implicitly defined by these level curves are shown.

The gradient of this function is given by:

∇⃗U(x1, x2) =
(
−2x1
−2x2

)
. (3.12)

Thus, at the point (2, 3) in the (x1, x2) plane, the gradient is the vector (−4,−6),
and at (1,−1), it is (−2,+2).

In Figure 9, we present the gradient (3.12), rescaled for visual clarity, and the
level curves of U in the (x1, x2) plane implicitly defined by U(x1, x2) = u for various
values of u.

Looking at Figure 9 it becomes evident that the gradient vector field of this
function exhibits the following properties:

1. It is perpendicular (orthogonal) to the level curves at every point.

2. The direction of the gradient is the one of the steepest increase in U, known
as the direction of steepest ascent. Conversely, the opposite direction is the
one of the steepest decrease in U, known as the direction of steepest descent.
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3. The magnitude of the gradient is proportional to the“steepness”of U at each
point.

4. In particular, at a local maximum or minimum, where the steepness is zero,
the gradient is also zero.

Figure 9: ∇⃗U(x1, x2) = (−2x1,−2x2) (rescaled), and curves in the (x1, x2) plane defined by
U(x1, x2) = u for different values of u.

These properties are valid for every sufficiently smooth function U(x1, x2), and
they extend to any number of variables. All of these properties can be easily proved
with the concepts presented in this section. Let’s explore how.

If at point (x1, x2), U(x1, x2) = u, for any small enough displacement (dx1, dx2),
basic calculus indicates that the change in U is well approximated at first order
by:

dU =
∂U
∂x1

dx1 +
∂U
∂x2

dx2, (3.13)

where the partial derivatives are evaluated at the same point (x1, x2).

From (3.2), (3.7), and (3.11), we can see that the right-hand side of (3.13) can

be interpreted as the scalar product between the gradient ∇⃗U and the displacement
vector dx = (dx1, dx2):

dU =
(
∂U/∂x1
∂U/∂x2

)
·

(
dx1
dx2

)
= ∇⃗U · dx = |∇⃗U ||dx| cos θ, (3.14)
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where θ is the angle between the gradient vector ∇⃗U at (x1, x2) and the displacement
vector, that can have a priori an arbitrary direction.

Now, let’s focus on the right-hand side of (3.14):

1. If we want to our displacement to lie within the same level curve U(x1, x2) = u,
the only way to do so is to make a displacement orthogonal to the gradient
∇⃗U at that point, so that cos θ = 0 and dU = 0. This proves the first point.

2. Fixing the magnitude of the displacement |dx|, dU is maximized when θ = 0
(cos θ = 1), meaning the displacement is in the same direction as the gradient.
Conversely, dU is minimized when θ = 180◦ (cos θ = −1), indicating that the
displacement is in the opposite direction of the gradient. This proves the
second and third points.

3. If the gradient is zero, dU = 0 for small enough displacements regardless of
their direction. This behavior is expected at local maximum or minimum
points, as well as in general at critical points where all the first derivatives
vanish. This proves the last point.

One can begin to appreciate the power of vector calculus when realizing that
even though the first equality in (3.14) is explicitly in 2 dimensions, the last two
equalities hold in any dimension. Indeed, since (3.7) holds for any pair of vectors
in any-dimensional vector space:

dU =
n∑

i=1

∂U
∂xi

dxi = ∇⃗U · dx = |∇⃗U ||dx| cos θ. (3.15)

Thus, although initially motivated in the two-dimensional case shown in
Figure 9, the gradient is orthogonal to the “level hyper-surface” U(x1, . . . , xn) = u
of any sufficiently smooth function U in any dimension.

4. Gradient descent and related optimization algorithms

Finding the local maximum of a function f mirrors the process of locating the
local minimum of − f . Given this, our focus in this section will primarily be on
identifying local minima.

In elementary calculus involving a single variable, students are introduced to
the concept that identifying critical points involves taking derivatives, setting them
equal to zero, and subsequently solving the resultant equation. To illustrate this
with a rudimentary example, consider the function

f (x) =
x2

2a
, a > 0. (4.1)
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From this, we deduce

f ′ =
x
a
= 0, (4.2)

which gives x = 0, representing a minimum.

In a similar vein, for functions of multiple variables, say f (x1, . . . , xn), critical
points arise where all first partial derivatives are zero—that is, where the gradient
vanishes. Yet, when dealing with functions of several variables or even intricate
single-variable functions, deriving an analytical solution to the corresponding equa-
tions is typically elusive. Consequently, there’s a need for algorithms that can
approximate these local minima effectively.

Many modern algorithms, especially those employed in machine learning, stem
from a direct implication of the four gradient field properties elaborated in the
preceding section. To determine the local minimum of a function f (x1, . . . , xn), the
following steps can be adopted:

1. Choose an initial point x0 = (x01, . . . , x0n) based on whichever criteria best
suits the problem at hand.

2. Move in tiny steps, which are negatively proportional to the gradient direc-
tion (α, ε > 0):

if |∇ f (xt)| > ε, xt+1 = xt − α∇ f (xt).

3. Conclude the process when the gradient magnitude is sufficiently small, i.e.,
if |∇ f (xt)| ≤ ε.

This is the famous “gradient descent” minimization algorithm.

Taking, for instance, the rudimentary function f (x) = x2

2a , where the gradient is
simply the derivative ∇ f = f ′ = x

a , we get:

1. minx f (x) = x2

2a , ∇ f = f ′ = x
a .

2. Select an initial point, x0.

3.

xt+1 = xt − α
xt

a
=

(
1 −
α

a

)
xt, or equivalently xt =

(
1 −
α

a

)t
x0.

4. End the process when

|∇ f (xt+1)| =
∣∣∣∣∣(1 − αa

)t x0

a

∣∣∣∣∣ ≤ ε.
The termination criterion implies that the process should be halted after:

t =
ln

(
|x0 |

aε

)
ln

(
1
|1− αa |

) ≈ ln
(
|x0|

aε

)
a
α
, for α ≪ a. (4.3)
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Note that the third point implies that xt → 0 as t → ∞ if α is sufficiently small.
In essence, the algorithm converges to the correct global minimum.
Equation (4.3) suggests that the number of iterations required to achieve a specific
accuracy increases logarithmically with the inverse of the desired error ε (i.e., as
the desired error decreases, the number of iterations increase), and linearly with
the inverse of the step size α (the smaller the step size, the greater the number of
iterations required).

Further, if α is too large, the algorithm will diverge. Specifically, the third
point insinuates that if |1 − α/a| > 1, which occurs when α > 2a (keeping in mind
that both a and α are positive), the algorithm will diverge.

Although the details can vary depending on the function and the number of
variables, generally, if the algorithm converges, the iterations needed to approxi-
mate a (local) minimum increase with the inverse of the desired accuracy and the
inverse of the step size. This presents a trade-off: a smaller step size may require
more computational time to converge to the desired accuracy, whereas a larger one
might prevent convergence altogether.

It is crucial to understand that the algorithm will not always find the global
minimum. This is only assured for convex optimization [7]. Typically, the algo-
rithm may get caught in a local minimum, as seen in neural network training in
machine learning. For more complex scenarios, pinpointing the global minimum
can be computationally hard.

An essential property of the gradient is its linearity:

∇⃗(a f (x) + bg(x)) = a∇⃗ f (x) + b∇⃗g(x). (4.4)

In machine learning, the training often entails minimizing a “cost function”
that is the mean of cost functions for each training set element:

min
x

f (x) = min
x

1
m

m∑
i=1

fi(x). (4.5)

Due to linearity, the gradient of f (x) is the mean of the gradients of each fi(x).
Therefore, step 2 of the “gradient descent” minimization algorithm can be
reexpressed as:

xt+1 = xt − α∇⃗ f (xt) = xt − α
1
m

m∑
i=1

∇⃗ fi(x). (4.6)

The gradient of f has a magnitude and direction equivalent to the mean of m
vectors ∇⃗ fi(x), which generally point in varying directions. If m is large, computing
the average can be computationally costly. It is expected that if we randomly split
the m training set elements into s “mini-batches” of b elements, with m = s×b, and
take s steps in the direction of each mini-batch’s average gradient, the trajectory
xt will, on average, align with the trajectory in equation (4.6).

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 31(2): 195–229, Jul – Dec 2024



214 s. a. pernice

Ultimately, the choice is between T “total gradient” steps vs. sT “mini-batch
gradient” steps. Empirically, many practical situations, particularly when min-
imizing deep neural networks’ cost functions, favor the latter. This method is
termed “stochastic gradient descent” and forms the foundation of cutting-edge
minimization techniques in machine learning.

5. Gradients and the intuition behind the Lagrange multiplier
method

5.1. For two variables, one constraint.

In Section 2.3, we derived Lagrange’s equations (2.26-2.28) to solve the max-
imization problem for the function U(x1, x2), now employing the generic indepen-
dent variables xi, subject to the constraint I(x1, x2) = i. As noted earlier, many eco-
nomics textbooks present these equations as a formal procedure, closely mirroring
the outcomes from the graphical method outlined in Section 2.2. However, they of-
ten overlook the innate gradient-field based intuition behind why the
Lagrange multiplier technique is effective, particularly its seamless adaptability to
scenarios with higher dimensions and multiple constraints—a feature the graphical
method lacks.

The goal of this section is to elucidate the underlying intuition behind the
Lagrange multipliers using the mathematical preliminaries we introduced earlier.

Equations (2.26-2.27) can be succinctly represented as:

∇⃗U = λ ∇⃗I. (5.1)

This equation unveils a profound geometric insight: at the point of constrained op-
timization, the gradients of U and I exhibit proportionality. Specifically, depending
on the sign of the Lagrange multiplier λ (either positive or negative), these gradi-
ents align in parallel or antiparallel directions. In essence, the Lagrange multiplier
serves as the constant of proportionality linking the gradients of U and I at the
optimal point.

Even in the context of the two-dimensional analysis of Section 2.2, the compact
form given by equation (5.1) provides deeper insights than the observation made
there: Namely, that the level curves of both U and I coincide at the constrained
optimum. When these level curves align, their tangent vectors will be oriented in
the same direction at this optimum. However, we know that ∇⃗U is orthogonal to
U’s level curves, and when viewing I(x1, x2) as a distinct function, ∇⃗I is orthogonal
to its level curves. In a two-dimensional space, given a direction tangent to the
level curves, there’s only one orthogonal direction. This implies that the gradients
∇⃗U and ∇⃗I must be proportional to each other.
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For instance, at the constrained optimum (2.20), the gradients of the functions
U and I given in equations (2.18-2.19) are:

∇⃗U =
1
2

(√
x2/x1√
x1/x2

)
=

(
0.5
0.5

)
, (5.2)

∇⃗I =
(√

2 x1/5
1

)
=

(
1
1

)
. (5.3)

Consequently, we find:
∇⃗U = 0.5 ∇⃗I. (5.4)

This implies that λ = 0.5 in equation (5.1).

This observation elucidates why we require the new variable λ, which remained
somewhat obscure in Section 2.2. Indeed, the preceding argument indicates that
the directions of ∇⃗U and ∇⃗I must coincide, but it does not necessarily imply any
specific relationship between their magnitudes. The gradient’s geometric property
highlighted in point 1 of Section 3.2, that it is orthogonal to the level curves at every
point, does not provide information about the relationship between the steepness
of U and I at the constrained optimum. Consequently, a new variable becomes
necessary to establish this relationship: ∇⃗U and ∇⃗I should be proportional to each
other, as we see in (5.4), but no assumptions about the magnitudes come into play,
hence equation (5.1).

Equation (5.1) offers a meaningful interpretation of the Lagrange multiplier λ:
when the constraint I = i is relaxed to I = i + di, we have

dI = ∇⃗I · dx =
∇⃗U
λ
· dx =

dU
λ
, or dU = λ dI. (5.5)

In simple terms, if the constraint I = i is slightly relaxed to I = i + di, the change
in the value of U at the new optimal point is proportional to the change in the
constraint, and the constant of proportionality is the Lagrange multiplier. In the
context of U representing utility and I as the budget function, λ signifies the change
in utility per unit change in the budget constraint.

5.2. For n variables, one constraint.

The real strength and beauty of the Lagrange multiplier method emerge when
we generalize it to functions with a higher number of variables and more con-
straints. Consider a function U with n variables subject to a single constraint:

max
(x1,...,xn)

U(x1, . . . , xn), (5.6)

I(x1, . . . , xn) = i. (5.7)

To employ the Lagrange multiplier method, we formulate the Lagrangian:

L(x1, . . . , xn, λ) = U(x1, . . . , xn) − λ (I(x1, . . . , xn) − i) . (5.8)
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The Lagrangian L is a function of n + 1 variables, which includes the n original
variables x1, . . . , xn and the Lagrange multiplier λ. Our goal is to optimize this
Lagrangian with respect to all these variables, resulting in the following system of
equations:

∇⃗U = λ∇⃗I, (5.9)

I = i. (5.10)

Equation (5.9) is an expansion of our earlier geometric insight from equation (5.1).
In this generalized scenario, the gradients in (5.9) each represent a system of n
equations—one for each variable.

The constraint given by equation (5.10) implicitly defines an n− 1 dimensional
hypersurface. In theory, echoing our approach from Section 2.1, one could attempt
to solve explicitly for xn in terms of x1, . . . , xn−1, substitute this expression into
equation (5.9), and then determine the gradients utilizing the chain rule. However,
this technique frequently falters, especially when confronting intricate functions.

Another strategy, reminiscent of our approach in Section 2.2, is to examine the
tangency between the hypersurfaces associated with the constraint and the objec-
tive function at the optimum. Yet, a predicament arises: When two n − 1 dimen-
sional hypersurfaces are tangent, they touch along infinitely many directions within
the n− 1 dimensional tangent hyperplane. This fact deviates from our simpler ob-
servation in Section 5.1 for the two-dimensional case, where there’s solely one
tangent direction. Describing these infinite tangential directions proves intricate.

Instead, a more fruitful approach is to discern that all these infinite directions
within the n − 1 dimensional tangent hyperplane are orthogonal to a singular di-
rection, the one perpendicular to the tangent hyperplane. Given that the gradient
of I is perpendicular to the level hypersurface I = i, and likewise, the gradient
of U is orthogonal to the level hypersurface of U correlated with the constrained
critical point—keeping in mind that these level hypersurfaces touch each other at
the critical point in such a way that they share the aforementioned tangent hy-
perplane—it follows that the gradients ∇⃗U and ∇⃗I must align in proportion. Note
that there’s no inherent need for their magnitudes to correlate, which guides us to
the necessity of the Lagrange multiplier in equation (5.9), adjusting for possible
gradient magnitude disparities.

Such insights illuminate why the Lagrange method extends gracefully to n
dimensions, providing a cohesive algebraic framework to capture the underlying
geometric relationships.

Let us consider a simple example of minimization with three variables and a
linear constraint:

min U(x1, x2, x3) = x2
1 + x2

2 + x2
3, (5.11)

I(x1, x2, x3) = x1 = 0.8. (5.12)
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In Figure 10 we see the spherical level surfaces of U and its radial gradient
∇⃗U = (2x1, 2x2, 2x3), and in Figure 11 we see the planar level surfaces of I and
its gradient ∇⃗I = (1, 0, 0).

Figure 10: Left: level surfaces of the function U = x2
1 + x2

2 + x2
3. Right: gradient field of U,

∇⃗U = (2x1, 2x2, 2x3).

Figure 11: Left: level surfaces of the function I = x1. Right: gradient field of I, ∇⃗I =
(1, 0, 0).

The gradient equation (5.9) becomes 2x1
2x2
2x3

 = λ
 1

0
0

 ,⇒ x2 = x3 = 0 x1 =
λ

2
. (5.13)

The equations x2 = x3 = 0, x1 = λ/2 determine the infinite minima for all possible
values of the constraint I(x1, x2, x3) = x1 = i. For the specific value x1 = 0.8 in
(5.12), λ is fixed to 1.6, where the spherical level surface of U is tangent to the
plane x1 = 0.8, see Figure 12, and their gradients are parallel:

∇⃗U(0.8, 0, 0) =

 1.6
0
0

 , ∇⃗I(0.8, 0, 0) =

 1
0
0

 . (5.14)
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Figure 12: The spherical level surface of U is tangent to the plane x1 = 0.8. Note that
there are infinitely many directions to reach the critical point from the tangent plane
x1 = 0.8.

The example of equations (5.11-5.12) correspond to a problem of minimiza-
tion with a linear constraint, but the method works just as easily for nonlinear
constraints. Consider for example the problem

min U(x1, x2, x3) = x2
1 + x2

2 + x2
3, (5.15)

I(x1, x2, x3) = (x1 − 1)2 + x2
2 + x2

3 = 0.42 = 0.16. (5.16)

In Figure 13 different level surfaces of U and the level surface constraint (5.16) are
shown.
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Figure 13: Level surfaces of U: top left: U = 0.42 = 0.16, bottom left: U = 0.82 = 0.64,
right: U = 0.62 = 0.36. In all of them half of the level surface constraint I = 0.42 = 0.16 is
shown.

A detailed observation of this figure clearly suggest that the constrained min-
imum is at x1 = 0.6, x2 = x3 = 0, see the right part of Figure 13. Points in
level surfaces corresponding to smaller values of U, as in the upper left part of
Figure 13, are incompatible with the constraint (5.16), while points in level sur-
faces corresponding to greater values of U, as in the lower left part of Figure 13
are compatible with the constraint but do not minimize U. Note also that at the
constrained minimum x1 = 0.6, x2 = x3 = 0 the level surfaces of U and I are tangent
to each other.

Let us see what the gradient equation (5.9) says: 2x1
2x2
2x3

 = λ
 2(x1 − 1)

2x2
2x3

 . (5.17)

The last two equations seem to imply λ = 1, and arbitrary x2 and x3. But if λ = 1,
the first equation becomes x1 = x1 − 1, or 0 = −1, which is clearly a contradiction.
A more careful analysis of the last two equations is required.

Consider for example the second one: 2x2 = 2λx2, this implies λ = 1 if and only
if x2 , 0, but since this leads to a contradiction, this means that x2 must be zero,
which is also a solution of the equation. The same argument leads to x3 = 0. If
x2 = x3 = 0, no conditions on the value of λ arises from the equations (5.14-5.15),
and the equation (5.13) is satisfied for λ = x1/(x1 − 1) as long as x1 , 1.

With x2 = x3 = 0, the equation (5.16) becomes

(x1 − 1)2 = 0.42, or x1 − 1 = ±0.4. (5.18)
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The minus sign leads to x1 = 0.6, which is the solution that the right hand side of
Figure 13 visually suggest. x1 = 0.6 implies λ = x1/(x1 − 1) = −1.5, so the gradients
of U and I are antiparallel:

∇⃗U =

 1.2
0
0

 , ∇⃗I =

 −0.8
0
0

 . (5.19)

The reason they are antiparallel is that, as we have seen, the gradient always
point in the direction of maximum increase of the respective function, and while
U increases to the right at (0.6, 0, 0), I increase to the left at that point.

Equation (5.18) implies another solution: x1 = 1.4, x2 = x3 = 0. Figure 13
shows the level surfaces of U and I only in the range −1 ≤ xi ≤ +1, i = 1, 2, 3, so
this solution is not visible.

Figure 14: Left: level surfaces U = 0.62 = 0.66 and I = 0.42 = 0.16. Right: level surfaces
U = 1.42 = 1.96 and I = 0.42 = 0.16.

In Figure 14 we extend the range up −1.4 ≤ xi ≤ +1.4, i = 1, 2, 3. In the right
side of this Figure 14 it can be appreciated that the new solution is a maximum
of U under the constraint (5.16).

As mentioned in the introduction, the first order Lagrange equation (5.9) does
not distinguish between constrained maxima, minima, or general critical points.
That would require higher order analysis which are not treated in this paper. That
is why the constrained maximum solution shows up.

5.3. For n variables, many constraints.

When U is optimized under more than one constraint I j = i j, j = 1, . . . ,m,
Lagrange’s recipe consist of defining the Lagrangian as

L(x1, . . . , xn, λ1, . . . , λm) = U(x1, . . . , xn) −
m∑
j=i

λ j(I j(x1, . . . , xn) − i j), (5.20)
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where there are as many new variables (Lagrange multipliers) λ j as there are con-
straints, and equating to zero the first derivatives with respect to all the variables
x1, . . . , xn, λ1, . . . , λm. In terms of the gradients, these equations become:

∇⃗U =

m∑
j=i

λ j∇⃗I j, (5.21)

I j = i j. (5.22)

The gain intuition for equations (5.21-5.22) let us consider first the case of two
constraints, m = 2. As discussed in Section 5.2, in n dimensions, a constraint like
I1(x1, . . . , xn, ) = i1 defines implicitly an n−1 dimensional hypersurface, and at each
point of this hypersurface there is only one orthogonal direction, the direction of the
gradient ∇⃗I1. A second constraint, I2(x1, . . . , xn, ) = i2, also defines implicitly an n−1
dimensional hypersurface, and at each point the gradient ∇⃗I2 is orthogonal to it.

The constrained optimum, which must satisfy both the constraints I1 = i1
and I2 = i2, is located at the intersection of the corresponding n − 1 dimensional
hypersurfaces. Typically, this intersection is an n − 2 dimensional hypersurface.
The orthogonal complement of this intersecting hypersurface is spanned by the
gradients ∇⃗I1 and ∇⃗I2, respectively.

The same arguments we have used many times now indicate that the con-
strained optimum of U has to be positioned on an n − 1 dimensional level hyper-
surface of U that is tangential to the aforementioned n−2 dimensional hypersurface.
This means that the gradient of U, which is orthogonal to its level hypersurface,
should belong to the subspace spanned by the gradients ∇⃗I1 and ∇⃗I2. This idea is
encapsulated precisely by equation (5.21) for the m = 2 constraint scenario.

For a number of constraints m > 2 the argument is essentially the same once one
notes that the optimum must lie in the generically n−m dimensional hypersurface
intersection of the m, (n − 1) dimensional level hypersurfaces determined by the
constraints I j = i j, j = 1, . . . ,m, and that the gradients ∇⃗I j span the orthogonal
complement of this intersecting hypersurface.

To visualize these ideas consider the following problem of minimization of the
same function U but now with two constraints:

min U(x1, x2, x3) = x2
1 + x2

2 + x2
3, (5.23)

I1 = x1 = 0.7, (5.24)

I2 = x2 = 0.5. (5.25)

In Figure 15 we can see that the constrained minimum of U lies in the level
surface U = 0.74, tangent to the line x1 = 0.7, x2 = 0.5 (x3 arbitrary) given by the
intersection of the two constraints (5.24-5.25).
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Figure 15: Level surface of U = 0.72 +0.52 = 0.74 and the constraints x1 = 0.7 and x2 = 0.5.

Equations (5.21-5.22) become

 2x1
2x2
2x3

 =
 1.4

1
2x3

 = λ1

 1
0
0

 + λ2

 0
1
0

 . (5.26)

Which imply x3 = 0, λ1 = 1.4 and λ2 = 1.0. So, the gradient of the function U
being minimized, ∇⃗U = (1.4, 1, 0), is a linear combination of the of the gradient
of the constraining functions ∇⃗I1 = (1, 0, 0) and ∇⃗I2 = (0, 1, 0) at the constrained
optimum (0.7, 0.5, 0).

As explained above, the reason for this is that line x1 = 0.7, x2 = 0.5, x3 arbi-
trary, being the n−m = 3−2 = 1 dimensional intersection of the plane x1 = 0.5 and
the plane x2 = 0.5, and therefore belonging to both of them, must be orthogonal
to the vectors orthogonal to the respective planes. This means that it must be
orthogonal to their respective gradients. And since the level surface of U should be
tangent to this intersecting line at the constrained optimum, and its gradient ∇⃗U
is orthogonal to this level surface, ∇⃗U must lie in the two dimensional subspace
orthogonal to the intersection of the constraints, which implies that ∇⃗U should be
a linear combination of ∇⃗I1 and ∇⃗I2. This is what equation (5.26) is saying.
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6. Numerical optimization algorithms with equality constraints

The geometrical arguments developed in the previous section suggest the ex-
ploration of points that satisfy the constraints. Among these points, it is generally
true that at the constrained minima, the gradients of U and I will be linearly
dependent, see equations (5.9-5.10).

Numerically, finding a point that satisfies the constraints is nontrivial. Further-
more, moving in search of the constrained minima while remaining on the allowed
hypersurface is challenging unless one can express one variable explicitly as a func-
tion of the others. This task becomes particularly difficult when the constraint is
complex or when there are many variables. Equations (5.9) and (5.10) are best
viewed as necessary conditions for the destination, rather than the path, to the
constrained minima.

The difficulty of numerically following trajectories that satisfy the constraint
can be seen in equation (3.15), which we used to demonstrate that level hyper-
surfaces of any function are locally orthogonal to the gradient of that function.
This proof was based on a first-order approximation to the change in the function.
However, numerically, every displacement is finite and inevitably deviates from
this first-order approximation. The issue is not merely the deviation from the first-
order approximation, but the lack of a mechanism to stabilize these deviations.
Therefore, we need a mechanism that ensures these level hypersurfaces are stable.
That is, even if our trajectory towards the constrained minimum deviates from the
level hypersurface, some additional mechanism should return us to it.

With that objective in mind, a primary strategy is to modify the function U
to be minimized into a sequence of functions that increasingly penalize deviations
from the constraint. A very effective approach is to use a quadratic penalty:

min
x

Fn(x1, x2, x3, νn) = U + νn(I − i)2, νn → ∞. (6.1)

By minimizing each Fn without constraints (for example, using the algorithm in
Section 4) and using the final point x∗n of the nth minimization as the starting
point for the (n + 1)th minimization, we can find a local constrained minimum
under mild assumptions. Note that νn(I− i)2 is zero if x satisfies the constraint, and
positive otherwise. In other words, Fn = U for points x that satisfy the constraint.

The quadratic penalty function (I − i)2, which generalizes to the norm square
of the vector of constraints ∥I − i∥2 if there is more than one equality constraint,
works well in many practical situations. The general idea is to allow unconstrained
values of the independent variables xi, and impose an increasingly heavier cost for
violating the constraint. Consequently, the minimizing trajectory eventually ends
up as close as desired to satisfying the constraints.

In the example (5.11-5.12), we have

Fn(x1, x2, x3, νn) = x2
1 + x2

2 + x2
3 + νn(x1 − 0.8)2 (6.2)
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and its gradient is

∇⃗Fn(x1, x2, x3, νn) =

 2x1 + 2νn(x1 − 0.8)
2x2
2x3

 . (6.3)

The nth minimization happens at

x∗1,n =
νn

1 + νn
· 0.8→ 0.8, as νn → ∞, x∗2,n = 0, x∗3,n = 0. (6.4)

Thus, we recover the correct result (see equations 5.13-5.14).

In general, to determine a local minimum of a function U(x1, . . . , xn) with equal-
ity constraints I j = i j, j = 1, . . . , k, the following steps can be adopted:

1. Choose an increasing, positive sequence {νn} such that νn → ∞ as n → ∞,
and select a desired (small) error ϵ.

2. Choose an initial point x0 = (x01, . . . , x0n) based on criteria that best suit the
problem at hand.

3. With the nth element of the sequence νn, find the unconstrained minimum
of the function

Fn(x, νn) = U(x) + νn
k∑

j=1

(I j − i j)2 (6.5)

using the algorithm in Section 4 or your preferred unconstrained minimiza-
tion algorithm. Use the final point of the (n−1)th iteration, denoted as x∗n−1,
as the initial point for the nth iteration.

4. If ∥∇⃗Fn(x, νn)∥ < ϵ, finish the process.

5. Select νn+1 and return to step 3.

The analysis in Section 4 applies to the number of steps in each iteration.

For the selection of the sequence {νn}, one must consider the following trade-
off: generally, at least for the initial iterations, the faster νn grows with n (i.e.,
the greater the difference between νn+1 and νn, with νn+1 > νn), the greater the
difference between Fn+1 and Fn. Consequently, the distance between successive
minima ∥x∗n+1 − x∗n∥ will also be greater, causing step 3 to take longer to converge.
However, since the cost of violating the constraint will be higher, fewer itera-
tions will generally be needed. Therefore, selecting the optimal sequence {νn} is a
nontrivial problem. Nonetheless, if νn → ∞ as n→ ∞, we will find the local minima
under very general assumptions.

Moreover, the algorithm will converge closer to the local minima satisfying the
Lagrange conditions (5.9-5.10) if a smaller error ϵ is chosen. However, the smaller
this error, the larger the number of iterations required.
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One final remark about this algorithm: although it works well under fairly
general assumptions, the condition νn → ∞ as n → ∞ should raise some concern.
Numerically, it is never advisable to rely on a very large number. Is there an
alternative algorithm that does not require this condition?

Before addressing this question, it is worth noting that the Lagrange multipliers
did not play any explicit role in the algorithm. It is only after the process halts
that we should check whether conditions (5.9-5.10) are indeed satisfied. It would
be beneficial to understand if and how the Lagrange multipliers λ can be recovered
from the algorithm, beyond merely verifying at the end.

In this direction, note that from equation (6.1), we have that at the uncon-
strained minimum of Fn,

∇⃗Fn(x∗n, νn) = ∇⃗U(x∗n) + 2νn(I(x∗n) − i)∇⃗I(x∗n) = 0. (6.6)

From this and equation (5.9), we can infer that

λn ≡ −2νn(I(x∗n) − i), (6.7)

should converge to the correct λ as n→ ∞.

In the example (5.11-5.12), where I = x1, i = 0.8, and x∗n is given in equation
(6.4), we have

−2νn(I(x∗n) − i) = −2νn

(
νn

1 + νn
· 0.8 − 0.8

)
= 1.6

νn
1 + νn

, (6.8)

which indeed converges to λ = 1.6 as νn → ∞. In fact, λn in equation (6.7) does
converge to λ under fairly general assumptions.

Equations (6.6)-(6.7) suggest a generalization of the five-step algorithm de-
scribed earlier. Instead of equation (6.1), define the “augmented Lagrangian”
function

Ln(x1, x2, x3, λn, νn) = U − λ′n(I − i) + νn(I − i)2, (6.9)

whose unconstrained minima will satisfy

∇⃗Ln(x1, x2, x3, λ
′
n, νn) = 0, (6.10)

or
∇⃗U =

(
λ′n − 2νn(I(x∗n) − i)

)
∇⃗I ≡ λn∇⃗I. (6.11)

Returning to the example (5.11-5.12), the optimal point at iteration n satisfies 2x1,n
2x2,n
2x3,n

 = (
λ′n − 2νn(x1,n − 0.8)

)  1
0
0

 , (6.12)
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which implies

x1,n =
1.6νn + λ′n
2(1 + νn)

, x2,n = x3,n = 0. (6.13)

Note that x1,n → 0.8 if λ′n → 1.6, even if νn → any finite positive value!

This result is valid under fairly mild assumptions: if we manage to find
a sequence {λn} that converges to the correct Lagrange multiplier, the coefficient
νn of the stabilizer term νn(I − i)2 in the augmented Lagrangian function (6.9) does
not need to become excessively large for convergence. This avoids many potential
problems associated with dealing with large numbers and, in addition, tends to con-
verge faster to the correct constrained minima. The terms λn(I− i)+νn(I− i)2 in the
augmented Lagrangian extend naturally if there are multiple equality constraints.

But how do we find a sequence {λn} that converges to the right Lagrange
multiplier? Not surprisingly, (6.11) suggests the following iterative form for
updating λn:

λn+1 = λn − 2νn(I(x∗n) − i), (6.14)

where the sequence {νn} no longer has to diverge for large n.

The iterative rule (6.14), together with the quadratic “penalty”, or “stabi-
lizer” function, defines a famous algorithm known as the “Method of Multipliers”.
It consists of the 5 steps as before, but minimizing without constraints Ln given in
(6.9) instead of Fn in (6.5), and no longer requiring the weak point of the previous
algorithm, namely, that νn → ∞ as n→ ∞.

Returning to our example (5.11-5.12), (6.13) and (6.14) imply

λn+1 = λn − 2νn

(
1.6νn + λn

2(1 + νn)
− 0.8

)
=
λn

1 + νn
+ 1.6

νn
1 + νn

. (6.15)

Knowing that λ = 1.6, and assuming for simplicity a constant ν, the error in the
nth estimation of λ is

λn − 1.6 =
1

1 + ν
(λn−1 − 1.6) (6.16)

=
1

(1 + ν)n (λ0 − 1.6), (6.17)

where, as can easily be checked, the second line is the solution of the iterative rule
of the first line.

Equation (6.17) shows an exponentially fast convergence as long as ν > 1, but
still, the convergence is faster if ν is greater. This is true in general, but if the
problem is not convex, ν could need to be greater than 1 to ensure convergence.

The general rule is that it is still the case that greater ν generally leads to
faster convergence, but ν should not be too large to ensure convergence and avoid
potential numerical instabilities associated with very large numbers.
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This is just a tiny part of an enormous body of extremely powerful algorithms
to minimize functions with not only equality constraints, but also inequality ones,
see for example [4], [6], [7], [20].

7. Conclusions

The advent of the machine learning revolution has ushered in transformative
shifts across multiple disciplines, including economics and the broader realm of
social sciences. However, there remains a noticeable lag: the foundational quanti-
tative training in these fields has not fully adapted to these novel developments.

In this review paper, we sought to address a small part of this lacuna, focusing
on the vital but often overlooked concept of gradient fields. Despite its pivotal
role in comprehending numerous traditional problems within economics and social
sciences, gradient fields remain underrepresented in many foundational curricula
and methodologies.

By situating the concept of gradient fields within core contexts – namely, opti-
mization, both constrained and unconstrained – we endeavored to illuminate the
intuitive power of gradient methods. Furthermore, we emphasized its relevance
in the contemporary landscape, spotlighting its role in modern applications that
harness the capabilities of machine learning.

The flexible Lagrange multiplier method to solve constrained optimization
problems is often presented in a prescriptive and mechanistic manner. This rep-
resents an ideal context in which to convey the power of gradient field methods.
Together with the generalization of orthogonality provided by the scalar product,
gradient field methods are an ideal tool to extend our spatial intuitions into realms
highly disconnected from our everyday visual experience. And when intuition is
at work, solutions to problems often present themselves almost automatically.

Unfortunately, these kinds of mathematical tools that dramatically increase the
reach of intuition as a tool to help solve problems are notoriously underemphasized
in the quantitative training of economists and other social scientists. This review
work tries to contribute to correcting at least part of this problem, which acquires
increasingly larger dimensions given the usefulness of these methods in machine
learning.

We hope that this exposition serves as a bridge for students and scholars in
the mentioned disciplines, connecting traditional mathematical approaches with
the emergent techniques that are increasingly essential in today’s ever-evolving
academic and practical landscapes.
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