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Abstract

In this paper, we present a robust stability criterion for a heat equation with
axial symmetry and with a general time-conformable fractional derivative
defined on a sphere. The heat equation is assumed to have a heat source
that is represented as a Fourier series with coefficients described by bounded,
piecewise continuous functions. The robust stability criterion establishes
conditions to guarantee that the solution of the heat equation, along with
its partial derivative with respect to the radial axis and its general time-
conformable fractional derivative, remains bounded by a predetermined value.
The robust stability criterion is obtained by extending the concept of sta-
bility under constant-acting perturbations applied to systems of ordinary
differential equations. The results are illustrated numerically.

Keywords: general conformable fractional derivative; heat equation; Fourier series; robust
stability.

Resumen

En este art́ıculo, presentamos un criterio de estabilidad robusta para una
ecuación de calor con simetŕıa axial y con derivada fraccionaria general con-
formable en el tiempo definida en una esfera. Se supone que la ecuación de
calor admite una fuente de calor externa que se representa como una serie de
Fourier con coeficientes descritos por funciones continuas a trozos y acotadas.
El criterio de estabilidad robusta establece condiciones para garantizar que
la solución de la ecuación de calor, aśı como su derivada parcial con respecto
al eje radial y su derivada fraccionaria conformable general en el tiempo, son
funciones acotadas por un valor constante prefijado. El criterio de estabili-
dad robusta se obtiene por una extensión del concepto de estabilidad bajo
perturbaciones de acción constante que se aplica a sistemas de ecuaciones
diferenciales ordinarias. Los resultados se ilustran numéricamente.

Palabras clave: derivada fraccionaria conformable general; ecuación de calor; series de

Fourier; estabilidad robusta.

Mathematics Subject Classification: Primary: 93D09, 6A33. Secondary: 93B03,
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1. Introduction

The term fractional derivative has originated in 1695 when L’Hôpital asked Leibniz
in a letter about the meaning of the derivative dn

dxn when n = 1
2 ; see, for example,

[14]. This generated the development of fractional calculus, leading to the proposal
of various definitions for fractional derivatives and integrals. A review of some of
these definitions can be found in [15, 19].

In recent years, the study of fractional calculus has been the focus of attention
of different researchers due to the introduction of a new concept of local fractional
derivative due to Khalil, Al Horani, Yousef and Sababheh [12]: the conformable
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fractional derivative. The conformable fractional derivative satisfies some proper-
ties from elementary calculus [1]. These properties have made possible the study
of problems related to the existence, uniqueness, boundedness and stability of
solutions to some conformable fractional differential equations [7, 17, 24].

Furthermore, research on the existence of solutions to some conformable frac-
tional partial differential equations has been considered. In [11], the authors ex-
amine the existence of solutions of the conformable fractional heat equation using
Fourier series, while in [4] the same method is used to find the solution of the
conformable fractional heat equation defined in a cylinder. Regarding the con-
formable fractional heat equation with axial symmetry defined on a plate, the
existence of its solutions is studied in [5]. A different method for finding solutions
of the conformable fractional heat equation is discussed in [8] using the Fourier
transform.

The concept of the conformable fractional derivative introduced by Khalil and
his collaborators has generated different extensions in recent years, some particular
cases are addressed in [2, 3, 10, 16, 21, 22]. In this paper, we adopt the concept of
general conformable fractional derivative introduced in [22]. Using this concept,
we propose a method to establish a robust stability criterion for the heat equation
with axial symmetry and a general time-conformable fractional derivative defined
on a sphere assuming heat sources belonging to a prefixed set of functions. The
importance of robust stability lies in its applications to control theory; see, for ex-
ample, [6] The robust stability criterion is determined by extending the concept of
stability under constant-acting perturbations introduced by Duboshin and Malkin
for systems of ordinary differential equations; see, for example, [9]. This criterion
ensures that the solution of the heat equation, its general time-conformable frac-
tional derivative and its first partial derivative with respect to the radial axis do
not exceed a predetermined value.

We organize the paper as follows. Section 2 presents the main properties of
the general conformable fractional derivative. Section 3 outlines the statement
of the problem under study. The justification for the existence of solutions that
can be expressed as Fourier series is formulated in Section 4. The robust stability
criterion is presented in Section 5. Finally, the conclusions of the paper are given
in Section 7.

2. Preliminaries

This section summarizes the properties of the general conformable fractional deriva-
tive introduced in [22].
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Definition 1. The constant function φ(t, α) ≡ 1 and the continuous functions
φ : [0,∞) × (0, 1]→ IR that satisfy

• φ(t, 1) = 1 for all t > 0,

• φ(t, α) , 0 for all (t, α) ∈ [0,∞) × (0, 1],

• φ( · , α) , φ( · , β), where α , β and α, β ∈ (0, 1],

are called conformable fractional functions.

Definition 2. Let p : [0,∞) → IR and let φ be a conformable fractional function.
The general conformable fractional derivative of p of order α ∈ (0, 1] at t > 0 is
defined as

Dα,φp(t) = lim
ϵ→0

p(t + ϵφ(t, α)) − p(t)
ϵ

,

provided that the limit exists. If the limit limt→0+ Dα,φp(t) exists, we denote its
value by Dα,φp(0). That is,

Dα,φp(0) = lim
t→0+

Dα,φp(t).

In what follows, we use the expression “the function p is α-differentiable”when
the function p has a general conformable fractional derivative of order α ∈ (0, 1].
It is known that there are functions that are α-differentiable at a point t0 but are
not differentiable at that point; see for example [1], where the author shows some
examples that correspond to the choice φ(t, α) = t1−α as a particular case.

The particular choice of certain functions φ leads to some particular cases of
conformable fractional derivatives known in the literature; see [22]. Some partic-
ular cases are the following:

• If φ(t, α) ≡ 1, then Dα,φ coincides with the classical derivative.

• If φ(t, α) = t1−α, then Dα,φ reduces to the conformable fractional derivative
introduced in [12].

• If φ(t, α) = Γ(β)
Γ(β−α+1) t

1−α with β > −1, then Dα,φ reduces to the generalized

fractional derivative considered in [2].

The following properties of the general conformable fractional derivative are
satisfied:

Lemma 1 ([22]). If p : [0,∞) → IR is α-differentiable at t > 0, α ∈ (0, 1], then p is
continuous in t.
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Lemma 2 ([22]). Let α ∈ (0, 1] and let p and q be functions α-differentiable at t > 0.
Then

• Dα,φ(k1 p + k2q)(t) = k1Dα,φp(t) + k2Dα,φq(t) for all k1, k2 ∈ IR,

• Dα,φ(p · q)(t) = p(t)Dα,φq(t) + q(t)Dα,φp(t),

• Dα,φ
(

p
q

)
(t) =

q(t)Dα,φp(t) − p(t)Dα,φq(t)
q(t)2 .

• If p is differentiable at t, then

Dα,φp(t) = φ(t, α)
dp
dt

(t).

In particular, if l(t) = c with c ∈ IR, p(t) = tm with m ∈ IR and q(t) = eλt with
λ ∈ IR, then [22]

Dα,φl(t) = 0, Dα,φp(t) = mtm−1φ(t, α), Dα,φq(t) = λeλtφ(t, α).

Definition 3 ([22]). Let p : [0,∞)→ IR. The general conformable fractional integral
is defined as

Iα,φp(t) =
∫ t

0

p(s)
φ(s, α)

ds,

provided that integral exists for all t > 0.

Once again, in what follows, we use the expression “the function p is α-
integrable” when the function p has a general conformable fractional integral of
order α ∈ (0, 1].

The following relations between the operators Dα,φ and Iα,φ hold.

Lemma 3 ([22]). Let α ∈ (0, 1]. If p : [0,∞) → IR is continuous and Iα,φp(t) exists
for t > 0, then

Dα,φIα,φp(t) = p(t).

Lemma 4 ([22]). Let α ∈ (0, 1]. If p : [0,∞)→ IR is differentiable, then

Iα,φDα,φp(t) = p(t) − p(0).

We recall that a function p : [0,∞) → IR is strictly increasing if, for any two
numbers a and b such that a < b, we have p(a) < p(b). The function p is strictly
decreasing if, for any two numbers a and b such that a < b, we have p(a) > p(b).
With the help of the mean value theorem for the general conformable fractional
derivative presented in [22], the following result is obtained.
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Lemma 5. Suppose that

h(t) =
∫ t

0

ds
φ(s, α)

,

is strictly increasing on (0,∞). Let p : [0,∞)→ IR be continuous, such that Dα,φp(t)
exists over (0,∞). If Dα,φp(t) > 0 (respectively Dα,φp(t) < 0) for all t > 0, then p is
strictly increasing (respectively strictly decreasing).

Proof. We first observe that Dα,φh(t) = 1. Let t ∈ (a, b) and define

q(t) = p(t) − p(a) −
p(t) − p(a)
h(b) − h(a)

(h(t) − h(a)).

According to Rolle’s theorem, there exists c ∈ (a, b) such that Dα,φ(q(c)) = 0, so
Dα,φp(c) = p(b)−p(a)

h(b)−h(a) ; see [22]. The conclusion follows from this expression. □

The concept of general time-conformable fractional derivative is introduced
according to Definition 2 as follows:

Definition 4. Let A ⊂ IRm be a non-empty set and let p : [0,∞) × A → IR be a
function of m + 1 variables: (t, x) = (t, x1, . . . , xm). The general time-conformable
fractional derivative of order α ∈ (0, 1] of p at t > 0 is defined as

Dα,φt p(t, x) = lim
ϵ→0

p(t + ϵφ(t, α), x) − p(t, x)
ϵ

,

provided that the limit exists. If the limit limt→0+ Dα,φt p(t, x) exists, we denote its
value by Dα,φt p(0, x). That is,

Dα,φt p(0, x) = lim
t→0+

Dα,φt p(t, x).

If φ(t, α) ≡ 1, then the general time-conformable fractional derivative is reduced
to the usual first-order partial derivative with respect to t. Also, if p has a first-
order partial derivative with respect to t, then

Dα,φt p(t, x) = φ(t, α)
∂p(t, x)
∂t

.

3. Statement of the main result

Before stating our main result, we provide the following notation. We consider the
orthogonal set { j0 (µnr)}n∈IN of the spherical Bessel functions of order zero, where

jν(s) =
√
π

2s
Jν+ 1

2
(s) =

√
π

2

∞∑
n=1

(−1)n

n!Γ
(
n + ν + 3

2

) ( s
2

)2n+ν
,
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with ν ≥ 0 and where the sequence {µn}n∈IN is defined by µn =
π
R n with R ∈ (0, π).

It is well known that | j0(s)| ≤ 1 for all s ∈ (0,∞); see e.g., [20]. We set δ > 0
and denote by Dδ the family of sequences {δn}n∈IN of nonnegative real numbers
satisfying

∑∞
n=1 δn = δ, and for each {δn}n∈IN ∈ Dδ, we consider the sequence of sets

{Uδn }n∈IN defined by

Uδn =
{
u ∈ PC(IR) : |u(t)| ≤ δn

}
,

where PC(IR) represents the set of piecewise continuous functions defined on IR.
Finally, we consider the set

UδΩ =

{ ∞∑
n=1

un(t) j0(µnr) : un ∈ Uδn , {δn}n∈IN ∈ Dδ

}
.

The following norm is considered in the set Uδ
Ω
:

∥u∥L∞(Ω) = sup
(t,r)∈Ω

|u(t, r)| .

From the representation of the heat sources u in Uδ
Ω
as a Fourier series, we observe

that the inequality |u(t, r)| ≤ δ is satisfied for all (t, r) ∈ Ω, since

|u(t, r)| ≤
∞∑

n=1

|un(t)| ≤
∞∑

n=1

δn = δ.

Therefore, if u ∈ Uδ
Ω
, then ∥u∥L∞(Ω) ≤ δ. Similarly, on the set Uδn the following

norm is considered

∥un∥L∞(0,T ) = sup
t∈[0,T ]

|un(t)| .

It is clear that if un ∈ Uδn , then ∥un∥L∞(0,T ) ≤ δn.

In this paper, we consider the perturbed heat equation with axial symmetry
and with a general time-conformable fractional derivative defined on a sphere of
radius R, and whose perturbation is described by a heat source u ∈ Uδ

Ω
. That is, the

partial differential equation with a general time-conformable fractional derivative
described by:

Dα,φt y = κα

(
∂2y
∂r2 +

1
r
∂y
∂r

)
+ u(t, r), (3.1)

where (t, r) ∈ Ω = [0,T ] × [0,R], T > 0 is finite and κα is the generalized ther-
mal diffusivity constant. The general time-conformable fractional derivative used
in (3.1) is defined under the choice of a positive conformable fractional function
φ : [0,T ] × (0, 1]→ IR with the property that the function

h(t) =
∫ t

0

ds
φ(s, α)

,
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is well defined on [0,T ]. It follows that h is a strictly increasing function. We
assume that h(0+) = limt→0+ h(t) is finite. The equation (3.1) is complemented with
the following initial and boundary conditions:

y(0, r) = 0, r ∈ [0,R], (3.2)

y(t,R) = 0, |y(t, 0)|< ∞, t ∈ [0,T ]. (3.3)

The initial-boundary value problem (3.1)–(3.3) is a particular case of the diffusion
equation in polar coordinates analyzed in [13], where the existence of solutions and
the continuous dependence on source function and initial-boundary conditions of
the solution is shown.

We consider that the thermal diffusivity constant κα and the maximum value
of the polar radius R satisfy the inequality

R
2π
≤ κα. (3.4)

There are other cases that are of interest and that depend on the values of R and
κα. These cases are presented later in Remark 3.

In what follows, we consider that the solutions of the initial-boundary value
problem (3.1)–(3.3) with a heat source u ∈ Uδ

Ω
can be expressed as

y(t, r) =
∞∑

n=1

yn(t) j0 (µnr) , (t, r) ∈ Ω, (3.5)

where yn : [0,T ] → IR are functions (generalized Fourier coefficients) that need to
be determined. These functions satisfy the condition yn(0) = 0, n ∈ IN, which is
obtained from the initial condition y(0, r) = 0 for r ∈ [0,R].

The set of solutions y of the initial-boundary value problem (3.1)–(3.3) asso-
ciated with a heat source u ∈ Uδ

Ω
that are expressed in the form (3.5) is denoted

by YΩ. The set YΩ is non-empty, because if (3.1) does not admit heat sources,
that is, if we choose ū ≡ 0, then the solution of the initial-boundary value problem
(3.1)–(3.3) coincides with the trivial solution ȳ ≡ 0, that is, ȳ ∈ YΩ. Such a solution
is called unperturbed. We note that ȳ is the unique unperturbed solution of (3.1)
with initial-boundary conditions (3.2)–(3.3). In the set YΩ, the following norm is
considered:

∥y∥YΩ = max
{

sup
(t,r)∈Ω

|y(t, r)| , sup
(t,r)∈Ω

∣∣∣Dα,φt y(t, r)
∣∣∣ , sup

(t,r)∈Ω

∣∣∣∣∣∂y∂r (t, r)
∣∣∣∣∣} .

The introduction of this norm allows us to compare solutions y associated with
non-trivial heat sources u ∈ Uδ

Ω
with the unperturbed solution ȳ, that is, we can

analyze the real number ∥y − ȳ∥YΩ = ∥y∥YΩ . This allows us to introduce a concept
of robust stability for the initial-boundary value problem (3.1)–(3.3) with heat
sources u ∈ Uδ

Ω
, in the sense of the following:
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Definition 5. The unperturbed solution ȳ ≡ 0 of the heat equation with general
time-conformable fractional derivative (3.1) is called robustly stable with respect
to heat sources u ∈ Uδ

Ω
, if for all ϵ > 0 there exists η(ϵ) > 0 such that under the

condition: ∥u∥L∞(Ω) ≤ δ < η(ϵ), any other solution y ∈ YΩ of the initial-boundary
value problem (3.1)–(3.3) satisfies the inequality ∥y∥YΩ < ϵ.

Definition 5 is a natural extension of the concept of stability under constant-
acting perturbations introduced by Duboshin and Malkin, which is applied to
systems of ordinary differential equations; see, e.g., [9]. Concepts analogous to
those of Definition 5 have been considered in [18, 23]. In this paper, we establish
the conditions that guarantee the robust stability of the unperturbed solution ȳ ≡ 0
of the initial-boundary value problem (3.1)–(3.4) in the sense of Definition 5.

4. Application of the Fourier method and properties of generalized
Fourier coefficients

In this section, we present the justification for applying the Fourier method of
separation of variables to determine the solutions of the initial-boundary value
problem (3.1)–(3.3) when we consider heat sources u ∈ Uδ

Ω
.

It is well known that justifying the application of the Fourier method to deter-
mine solutions of the initial-boundary value problem (3.1)–(3.3) when heat sources
u ∈ Uδ

Ω
are chosen, consists in proving the uniform convergence on Ω of the Fourier

series (3.5), as well as three other series obtained by term-by-term differentiation
of the following functions:

Dα,φt y,
1
r
∂y
∂r
,
∂2y
∂r2 . (4.1)

The condition of existence is obtained as follows:

Theorem 1. Suppose that u(r, t) =
∑∞

n=1 un(t) j0(µnr) is a heat source for the initial-
boundary value problem (3.1)–(3.3) such that un ∈ Uδn for each n ∈ IN. If the series∑∞

n=1 δn is convergent, then the function y expressed in the form (3.5) is a unique
solution (in the almost everywhere sense) of the initial-boundary value problem
(3.1)–(3.3) associated with this heat source, that is, y ∈ YΩ.

The proof of this theorem is presented in Section 6.

From Theorem 1, it follows that for each choice of a heat source u ∈ Uδ
Ω
, the

initial-boundary value problem (3.1)–(3.3) always admits a solution that can be
expressed in the form (3.5).

We choose a sequence {δn}n∈IN ∈ Dδ and consider a heat source represented
by u(t, r) =

∑∞
n=1 un(t) j0(µnr), with un ∈ Uδn for all n ∈ IN. Let y be the solution

associated with this heat source that admits the representation (3.5).
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After substituting the expressions for y and u into the heat equation with a
general time-conformable fractional derivative (3.1), we find that the n-th Fourier
coefficient yn and the function un ∈ Uδn must satisfy the following general con-
formable fractional differential equation with an external perturbation:

Dα,φyn + καµ
2
nyn = un(t), yn(0) = 0. (4.2)

The initial condition yn(0) = 0 in (4.2) is obtained from the initial condition (3.3).

We denote by Yδn the set of solutions yn of (4.2) that are associated with an
external perturbation un ∈ Uδn . If the general conformable fractional differential
equation (4.2) does not admit an external perturbation, that is, if we choose ūn ≡ 0,
then the corresponding solution of (4.2) is the trivial solution ȳn ≡ 0, that is, it
follows that ȳn ∈ Yδn . The solution ȳn is called unperturbed.

Using the method described in [22], we find that the solution of (4.2) is ex-
pressed by

yn(t) =
∫ t

0
e−καµ

2
n(h(t)−h(s)) un(s)

φ(s, α)
ds. (4.3)

These solutions have the following properties:

(a) From the definition of general conformable fractional derivative, it follows
that

Dα,φyn(t) = un(t) − καµ2
n

∫ t

0
e−καµ

2
n(h(t)−h(s)) un(s)

φ(s, α)
ds. (4.4)

(b) If the external perturbations u±n (t) = ±δn are chosen inUδn , then the following
Fourier coefficients are obtained:

y±n (t) = ±
δn

καµ2
n

(
1 − e−καµ

2
n(h(t)−h(0+))

)
.

We note that y+n is strictly increasing and y−n is strictly decreasing on [0,T ],
because Dα,φy+n (t) > 0 and Dα,φy−n (t) < 0 for t ∈ [0,T ].

(c) For any other choice un ∈ Uδn , from the inequality u−n (t) ≤ un(t) ≤ u+n (t)
for t ∈ [0,T ], we observe that the solution yn of (4.2) associated with this
perturbation satisfies the inequality

y−n (t) ≤ yn(t) ≤ y+n (t), t ∈ [0,T ].

If yn is a solution of the general conformable fractional differential equation (4.2)
associated with an external perturbation un ∈ Uδn , from (b) and (c), it follows that

|yn(t)| ≤
δn

καµ2
n

∣∣∣∣1 − e−καµ
2
n(h(t)−h(0+))

∣∣∣∣ < δn

καµ2
n
,
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where the last inequality follows from the fact that h is strictly increasing. We de-
duce from this inequality that for each choice un ∈ Uδn , the corresponding solution
yn satisfies

sup
t∈[0,T ]

|yn(t)| <
δn

καµ2
n
. (4.5)

Using the same argument, it is shown that the function Dα,φyn satisfies

sup
t∈[0,T ]

|Dα,φyn(t)| < 2δn, (4.6)

which follows from (4.4) and (4.5).

Inequalities (4.5) and (4.6) allow us to introduce a concept of robust stability
analogous to the concept of stability under constant-acting perturbations due to
Duboshin and Malkin for systems of ordinary differential equations; see, e.g., [9].
For this purpose, we consider the following norm for the solution of (4.2):

∥yn∥Yδn = max
{

sup
t∈[0,T ]

|yn(t)|, sup
t∈[0,T ]

|Dα,φyn(t)|
}
.

Definition 6. The unperturbed solution ȳn ≡ 0 of the problem (4.2) is robustly
stable with respect to external perturbations un ∈ Uδn , if for all ϵn > 0 there
exists ηn(ϵn) > 0 such that under the condition: ∥un∥L∞(0,T ) ≤ δn < ηn(ϵn), any other
solution of the general conformable fractional differential equation (4.2) satisfies
the inequality ∥yn∥Yδn < ϵn.

We establish the robust stability criterion for the unperturbed solution of (4.2).
Let ϵn > 0. From inequalities (4.5) and (4.6), it follows that

∥yn∥Yδn ≤ 2δn max
{

1
2καµ2

n
, 1

}
.

Therefore, the inequality ∥yn∥Yδn < ϵn is valid if

δn < ηn(ϵn) =
ϵn

2 max
{

1
2καµ2

n
, 1

} = ϵn
2
, (4.7)

where the last inequality is obtained from (3.4). Therefore, if the inequality 0 <
δn <

1
2 ϵn holds, then ∥yn∥Yδn < ϵn, that is, the unperturbed solution of (4.2) is

robustly stable in the sense of Definition 6.

Remark 1. We note that the values on the right-hand side of the inequalities
(4.5) and (4.6) do not depend on the order α ∈ (0, 1] of the general conformable
fractional derivative in (4.2), or the fractional conformable function φ that is used
to define the general conformable fractional derivative. As a consequence, the same
property holds for the robust stability criterion (4.7) of the unperturbed solution
ȳn for each n ∈ IN.
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5. Robust stability criterion

In this section, we obtain a robust stability criterion for the unperturbed solution
ȳ of the heat equation (3.1) with initial-boundary conditions (3.2)–(3.3) when we
consider arbitrary heat sources u ∈ Uδ

Ω
. The robust stability criterion is obtained

from the properties of the Fourier coefficients of the solution y, which is expressed
in the form (3.5).

For each ϵ > 0 we define Eϵ as the set of sequences {ϵn}n∈IN of positive real
numbers that satisfy

∑∞
n=1 ϵn = ϵ. We set ϵ > 0 and choose a sequence {ϵn}n∈IN ∈ Eϵ .

If we consider a sequence {δn}n∈IN ∈ Dδ of positive terms such that 0 < δn <
ϵn
2 , according to the robust stability criterion (4.7) of the general conformable
fractional differential equation (4.2), we observe that

|y(t, r)| ≤
∞∑

n=1

|yn(t)| ≤
R2

π2κα

∞∑
k=1

δn, (5.1)

and ∣∣∣Dα,φt y(t, r)
∣∣∣ ≤ ∞∑

n=1

|Dα,φyn(t)| ≤ 2
∞∑

n=1

δn. (5.2)

Similarly, it follows that∣∣∣∣∣∂y(t, r)
∂r

∣∣∣∣∣ ≤ ∞∑
n=1

µn |yn(t)| ≤
1
κα

∞∑
n=1

δn
µn
≤

R
πκα

∞∑
n=1

δn. (5.3)

Therefore, according to the inequalities (5.1)–(5.3), if we define

M = max
{

1,
R

2πκα
,

R2

2π2κα

}
= 1,

then the estimate ∥y∥YΩ < ϵ is obtained if we choose

δ < η(ϵ) =
ϵ

2M
=
ϵ

2
, (5.4)

which follows from the restriction of the maximum value of the polar radius R and
the thermal diffusivity coefficient κα that is described in (3.4).

Remark 2. We note that the robust stability criterion (5.4) for the unperturbed
solution ȳ of the initial-boundary value problem (3.1)–(3.3) does not depend on
the order α ∈ (0, 1] of the general time-conformable fractional derivative in (3.1),
or on the conformable fractional function φ that is used to define the general time-
conformable fractional derivative, which follows as a consequence of Remark 1.
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As a conclusion, we obtain the following result:

Theorem 2. The unperturbed solution ȳ ≡ 0 of the initial-boundary value problem
(3.1)–(3.3) is robustly stable with respect to heat sources u ∈ Uδ

Ω
, since for each

ϵ > 0 it is enough to choose η(ϵ) = 1
2
∑∞

n=1 ϵn and 0 < δn < 1
2 ϵ assuming that {ϵn}n∈IN

belongs to Eϵ .

Remark 3. The inequality (3.4) is a particular case of the two cases that are
obtained from the values of the parameter M:

(1) If R ∈ (0, π), then κα can satisfy one of the following three subcases:

(1a) 0 < κα ≤
R2

2π2 , (1b)
R2

2π2 < κα <
R
2π
, (1c)

R
2π
≤ κα.

(2) If R ∈ [π,+∞), then κα can satisfy one of the following three subcases:

(2a) 0 < κα ≤
R
2π
, (2b)

R
2π
< κα <

R2

2π2 , (2c)
R2

2π2 ≤ κα.

The same technique can be applied in each case to show that the unperturbed
solution of the initial-boundary value problem (3.1)–(3.3) is robustly stable in the
sense of Definition 1. To do this, it is necessary to consider the corresponding
value of M. The subcase of study in this paper corresponds to (1c).

The following example shows the validity of the results that have been obtained
numerically with GNU Octave 7.2.0.

Example 1. As a particular case, we set κα =
1
4 and R = 1 in the equation (3.1).

We consider the problem of finding solutions of (3.1)–(3.3) such that ∥y∥YΩ < 1.

In the set E1 we choose the sequence {ϵn}n∈IN such that ϵn = (1 − p)pn−1 with
p ∈ (0, 1). In particular, we consider the case p = 3

10 , which allows us to obtain

ϵn =
9

10n . According to Theorem 2, we can choose {δn}n∈IN such that δn =
9

20 ϵn. As
a particular case, we consider the following conformable fractional functions:

φk(t, α) = bkt1−α, k ∈ {1, 2},

with b1 = 1 and b2 =
Γ(β−α+1)
Γ(β) . In such a case, we obtain the functions

hk(t, α) = bk
tα

α
, k ∈ {1, 2}.

We consider the external perturbations for the conformable fractional differen-
tial equation (4.2):

uk
n(t) = δn cos

(
bk

tα

α

)
∈ Uδn , k ∈ {1, 2},
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and with them, we consider the following approximation to the heat sources
uk(t, r) =

∑N
n=1 uk

n(t) j0(µnr) for some N ∈ IN. If we consider the values α = β =
1
2 ,

3
4 , 1, then we obtain the approximations of the solutions shown in Figures 1

and 2. These approximations have been obtained by considering the partial sums
yk(t, r) =

∑N
n=1 yk

n(t) j0(µnr). Similar expressions are used for the approximation of
the functions ∂

∂r yk, Dα,φ1
t yk and Dα,φ2

t yk.

We finally observe that in any of the two cases we obtain ∥yk∥YΩ ≤ 0.828235,
k ∈ {1, 2}.

Figure 1: Approximations of the solutions of the initial-boundary value problem (3.1)–
(3.3) with conformable fractional function φ1(t, α) for Example 1.

6. Proof of Theorem 1

We set δ > 0 and consider an arbitrary sequence {δn}n∈IN ∈ Dδ. Subsequently,
we choose an external perturbation un ∈ Uδn for each n ∈ IN. According to the
representation of the solution of the general conformable fractional differential
equations (4.2), the representation (3.5) of the solution of the initial-boundary
value problem (3.1)–(3.3) is represented by

y(t, r) =
∞∑

n=1

j0(µnr)
∫ t

0
e−καµ

2
n(h(t)−h(s)) un(s)

φ(s, α)
ds. (6.1)

To prove Theorem 1 it is enough to determine under what conditions the series
that define the functions (6.1) and (4.1) converge almost uniformly on Ω.
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Figure 2: Approximations of the solutions of the initial-boundary value problem (3.1)–
(3.3) with conformable fractional function φ2(t, α) for Example 1.

Regarding the series on the right-hand side of (6.1), we observe that

|y(t, r)| ≤
∞∑

n=1

∣∣∣∣∣∫ t

0
e−καµ

2
n(h(t)−h(s)) un(s)

φ(s, α)
ds

∣∣∣∣∣ < ∞∑
n=1

δn

καµ2
n
<

R2

καπ2

∞∑
n=1

δn,

where we have used the fact that | j0(s)| ≤ 1 for all s ≥ 0, and that µ2
n >

π2

R2 for each
n ∈ IN. We note that the series on the right-hand side of (6.1) converges almost
uniformly to the function y on Ω, provided that

∑∞
n=1 δn is convergent.

On the other hand, the general time-conformable fractional derivative of the
function (3.5) for (t, r) ∈ Ω is

Dα,φt y(t, r) =
∞∑

n=1

j0(µnr)
(
un(t) − καµ2

n

∫ t

0
e−καµ

2
n(h(t)−h(s)) un(s)

φ(s, α)
ds

)
. (6.2)

Therefore, the following inequalities hold for (t, r) ∈ Ω:

∣∣∣Dα,φt y(t, r)
∣∣∣ ≤ ∞∑

n=1

∣∣∣∣∣un(t) − καµ2
n

∫ t

0
e−καµ

2
n(h(t)−h(s)) un(s)

φ(s, α)
ds

∣∣∣∣∣
≤

∞∑
n=1

δn
(
2 − e−καµ

2
n(h(t)−h(0+))

)
≤ 2

∞∑
n=1

δn.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 32(1): 35–53, Jan – Jun 2025
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We note once again that the series on the right-hand side of (6.2) converges almost
uniformly to the function Dα,φt y on Ω, provided that

∑∞
n=1 δn is convergent.

Similarly, as

1
r
∂y
∂r

(t, r) = −
∞∑

n=1

µn

r
j1(µnr)

∫ t

0
e−καµ

2
n(h(t)−h(s)) un(s)

φ(s, α)
ds, (6.3)

and according to the validity of the identity

3 j1(s)
s
= j0(s) + j2(s), s ≥ 0; (6.4)

see [20], thus the following inequalities hold:∣∣∣∣∣1r ∂y∂r (t, r)
∣∣∣∣∣ ≤ ∞∑

n=1

∣∣∣∣∣µn

r
j1(µnr)

∫ t

0
e−καµ

2
n(h(t)−h(s)) un(s)

φ(s, α)
ds

∣∣∣∣∣
≤

∞∑
n=1

∣∣∣∣∣2µ2
n

3

∫ t

0
e−καµ

2
n(h(t)−h(s)) un(s)

φ(s, α)
ds

∣∣∣∣∣
≤

∞∑
n=1

2µ2
n

3
·
δn

καµ2
n

(
1 − e−καµ

2
n(h(t)−h(0+))

)
≤

2
3κα

∞∑
n=1

δn.

Therefore, the series on the right-hand side of (6.3) converges almost uniformly to

the function 1
r
∂y
∂r on Ω provided that

∑∞
n=1 δn is convergent.

Finally, for the series

∂2y
∂r2 (t, r) = −

∞∑
n=1

µ2
n

(
j0(µnr) −

2
µnr

j1(µnr)
) ∫ t

0
e−καµ

2
n(h(t)−h(s)) un(s)

φ(s, α)
ds, (6.5)

and according to the identity (6.4), it follows that∣∣∣∣∣∣∂2y
∂r2 (t, r)

∣∣∣∣∣∣ ≤ ∞∑
n=1

µ2
n

∣∣∣∣∣∣
∫ t

0
e−καµ

2
n(h(t)−h(s)) un(s)

φ(s, α)
ds

∣∣∣∣∣∣
≤

∞∑
n=1

µ2
n ·
δn

καµ2
n

(
1 − e−καµ

2
n(h(t)−h(0+))

)
≤

1
κα

∞∑
n=1

δn.

It is concluded that the series on the right-hand side of (6.5) converges almost

uniformly to the function ∂
2y
∂r2 on Ω, provided that the series

∑∞
n=1 δn is convergent.

After substituting the expressions (6.1), (6.2), (6.3) and (6.5) in the heat equa-
tion with a general time-conformable fractional derivative (3.1), it can be verified
that the function in (6.1) is a unique solution (in the almost everywhere sense)
to the initial-boundary value problem (3.1)–(3.3) associated with the heat source
u ∈ Uδ

Ω
.
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7. Conclusion

A method has been described that allows to stabilize the trivial solution of the
heat equation with axial symmetry and with time-conformable fractional derivative
that is defined on a sphere and that admits heat sources that belong to a prefixed
set, assuming zero initial-boundary conditions. With the help of this criterion, the
values of its solution have been bounded by a positive constant value, as well as the
values of its time-conformable fractional derivative and its first partial derivative
with respect to the radial axis. The obtained criterion is independent of the order of
the time-conformable fractional derivative as well as of the conformable fractional
function that is used in the general time-conformable fractional derivative.
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