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16 J. G. CALVO — M. SOLANO

Abstract

This article introduces a two-level overlapping additive Schwarz algorithm
tailored for solving elliptic problems discretized with the symmetric interior
penalty discontinuous Galerkin method. The proposed algorithm allows for
the use of irregular subdomains, overcoming limitations of other approaches
where the coarse mesh was based on triangular elements. Additionally, we
provide a brief description of the numerical implementation of the Galerkin
method. We present numerical results validating the relevance of our al-
gorithm, including cases where the coefficient of the differential equation
is discontinuous—a feature that is particularly relevant to various practical
applications.

Keywords: domain decomposition; discontinuous Galerkin methods; irregular subdomain
boundaries; overlapping Schwarz algorithms; nodal elliptic problems.

Resumen

Este articulo presenta un algoritmo aditivo de Schwarz de dos niveles con
traslape disenado para resolver problemas elipticos discretizados con el mé-
todo Galerkin discontinuo de penalizacién interior simétrico. El algoritmo
propuesto permite utilizar subdominios irregulares, superando limitaciones
de otros enfoques donde la malla gruesa se basaba en elementos triangulares.
Se incluye ademés una breve descripcién de la implementacién numérica del
método de Galerkin. Se presentan resultados numéricos que validan la per-
tinencia del método, incluyendo casos donde el coeficiente de la ecuacién
diferencial es discontinuo, una caracteristica que es relevante en diversas
aplicaciones.

Palabras clave: descomposiciéon de dominios; métodos discontinuos de Galerkin; subdo-
minios con frontera irregular; algoritmos con traslape de Schwarz; problemas
elipticos nodales.

Mathematics Subject Classification: Primary: 65F08, 65F10. Secondary: 65N30,
65N55.

1. INTRODUCTION

In this paper we study a preconditioner suitable for linear systems that arise
from the discretization of partial differential equations (PDEs) using discontinuous
Galerkin methods (DGMs). We focus on Poisson’s equation on a given polygonal
domain Q c R? with homogeneous Dirichlet boundary conditions:

—div(pVu) = f in Q, 1
u=0 ono0Q, 1)

where p is a given coefficient. Let H)(Q) denote the usual Sobolev space consisting
of all functions u € L2(Q), such that Vu € (L?(Q))?, with vanishing trace. A weak
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A TWO-LEVEL OVERLAPPING SCHWARZ PRECONDITIONER... 17

formulation for problem (1) is posed in Hj(Q), which is given by: Find u € H)(Q)
such that

a(u,v) := J pVu-Vy = J fv=:(f,v)o WveH)Q), (2)
Q Q
where p € L*(Q) is a function such that p(x) = @ > 0 for some constant a.

We define a finite-dimensional space Vj, and a symmetric positive definite bi-
linear form
ap(-,-) : Vi x Vjy > R,

in order to formulate the discrete problem: Find u;, € V), such that

an(up,vi) = (fivn)o Vg € V. (3)

If {¢1,...,¢m)y is a basis of V, problem (3) is equivalent to an ill-conditioned linear
system of equations of the form AA = b, where the matrix A € R"*™ has entries
Aij = ap(¢;, ¢:) for i, je {1,...,m}, the vector b € R™ has entries b; = (f,¢;)o, and
the unknown vector A € R contains the coordinates of the solution u; in the basis
of Vh; i.e., u, = Z;ﬂzl /li¢i e V.

The class of discontinuous Galerkin methods can be traced back to [2], where
a fourth-order PDE is solved with piecewise polynomials that are not necessarily
continuous. For a comprehensive analysis of these methods and their applications,
see [1, 7, 8, 15] and the references therein. DGMs offer advantages such as the
use of non-uniform and unstructured meshes, as well as solving time-dependent
problems with time discretizations [12]. However, since the total number of degrees
of freedom is greater than when using continuous spaces, it is relevant to study
preconditioning methods for these linear systems.

Previous studies related to overlapping Schwarz methods for DGMs include
[11, 12, 13], where the coarse triangulation is based on triangles. We instead con-
sider general domain decompositions and define an algorithm suitable for irregular
partitions, which are relevant for various practical applications. Additionally, we
experimentally confirm that our algorithm is effective for piecewise-discontinuous
coefficients p in (1), as opposed to previous works assuming p(x) = 1. These
studies deduce a bound of the form

<C 1+H
Kk < —
0

for the condition number « of the preconditioned system, where C is independent
of the number of subdomains and the size of the elements. The parameter H/§
represents the maximum ratio of the diameter H; of the subdomain Q; and the
overlap width §; of the corresponding overlapping subdomain Q; see Section 3.2
for further details. Our algorithm preserves this bound despite using irregular
subdomains.

For conforming spaces, discrete harmonic functions were introduced to handle
irregular subdomains in [10]. While there are alternative methods to avoid such
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18 J. G. CALVO — M. SOLANO

expensive construction [3, 4], we consider discrete harmonic extensions for the sake
of simplicity; see [16, Chapter 4] for further details. We refer to [3, 4] for a complete
study and implementation details on economic variants based on projections over
polynomial spaces for the case of continuous spaces.

The remainder of the paper is organized as follows. In Section 2, we briefly
describe a DGM for problem (1), focusing solely on a symmetric variant. We then
describe the general theory of Schwarz preconditioners and our preconditioner for
the discretized problem in Section 3. In Section 4, we include some implementa-
tion details for DGMs applied to problem (1). Some numerical experiments that
confirm the algorithm’s competitiveness are shown in Section 5. We conclude with
some final remarks in Section 6.

2. DISCONTINUOUS GALERKIN METHOD

We briefly describe the lowest-order DGM for nodal elliptic problems in two di-
mensions for our model problem (1); see [1] for a unified analysis of discontinuous
Galerkin methods for elliptic problems, [8, 15] for a complete study, [7] for an
interior penalty DGM applied to meshes with arbitrarily-shaped elements, and [5]
where our numerical implementation of the method can be downloaded.

For the discretization of (2), let {77}s>0 be a family of triangulations of Q with
diameter h, composed of general, simple triangular elements. See Section 5 for
examples of the meshes considered in our numerical experiments. For an element
E € T}, denote by P (E) the local space of linear polynomials defined in E. We can
choose the degrees of freedom for a function v € P;(E) as its nodal values on the
vertices of the polygon E. Globally, the non-conforming DGM space Vj, ¢ H,(Q)
is defined as

V= {ve L*(Q) :v|g € P,(E) VE € T3} (4)

We follow [9, 15]. Denote by &} and & the set of edges of 77 in the interior and
boundary of Q, respectively, and let &, := &) U E?. For each interior edge e € &,
let E{ and E5 be the two elements that share e, and n, the unit normal vector
oriented from E{ to Ef. For a discontinuous function v, we define its average and
jump along an interior edge e € &, as

{(v}e = % (v

E¢ +VE§)7 [V]e := vlEe = vlgg,
respectively. If e € SZ is a boundary edge that belongs to the element Ef, we

simply define
{vle=[]e=v

We omit the subscript e when there is no ambiguity.
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A TWO-LEVEL OVERLAPPING SCHWARZ PRECONDITIONER... 19

The weak formulation of problem (1) is given by

Z J-qu Vv — Z f{qu n}[v]

EeTy, eeEy,

-3 [ovendta s B 5 (- 3 |

€8y €8y KeT,

where {o.}. are given positive stability constants and |e| is the length of edge e;
see, e.g., [9, Section 4.2]. We end up with the symmetric discrete problem: Find
u € V, such that

ap(u,v) = (f,v)o YveV,, (5)

where
ap(u,v) := a(u,v) — by (u,v) — by (v,u) + by(u,v), (6)

and

)= 3 [tV ndbl. bafu)i= 3 7 [l

ee&, ee&y,

For brevity, we omit details regarding the well-posedness of problem (5) and a
priori estimates; for a comprehensive study, see [8, 9, 15]. It is worth noting
that we are considering only the symmetric interior penalty Galerkin variant for
simplicity, although other variants of DGM have been widely studied [1].

3. TWO-LEVEL OVERLAPPING SCHWARZ PRECONDITIONER

We describe the standard two-level overlapping Schwarz preconditioner;
see [16, Chapter 3] for the abstract Schwarz theory, [16, Chapter 4] for the case
of overlapping methods, [3, 4, 10, 17] for specific applications with irregular sub-
domains, and [6] for a recent study where the coefficient p has large variations
(referred as a high-contrast coefficient).

3.1. Abstract Schwarz theory.

We focus on preconditioning the linear system A2 = b that arises from problem (3)
with DGMs. Assume there is a family of spaces {Vi}f\’: o and interpolation operators
RIT : Vi = Vj, such that

N
Vi =Ri Vo + Y RV,
i=1

The space V; is called coarse space, while the spaces V; (i € {1,...,N}) are called
local spaces. We then introduce symmetric, positive definite bilinear forms on
these subspaces,

ai(,):VixV;—>R, i€{0,...,N}.
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20 J. G. CALVO — M. SOLANO

For simplicity, we choose
- T T .
a,-(u,-, V,') = ah(Ri I/t,‘,Ri Vl‘), Ui, Vi € Vi,

this choice is referred to as exact solvers. In this case, the local stiffness matrix
A; 1 V; - V; associated to (-, ) is given by A; = R;/AR! , where R; = (R )". Schwarz
operators are defined as

Pi:=RIAT'RA, i€{0,1,...,N},

and the two-level additive Schwarz preconditioner is defined as

The associated preconditioned linear system can be written as

P,u = A;;Au = A;; b,

with
N N
Al = ZR,.TA;IR,- = ZRiT(RiARiT)_'Ri. (7)
i=0 i=0

We remark that the preconditioner A;dl is determined once we define the operators
Rl.T. For the local spaces, defining these operators is straightforward; however, for
the coarse space, extra work is usually required when irregular subdomains are
present. We describe such constructions in the following sections.

3.2. Local spaces.

We partition the domain Q into N non-overlapping disjoint subdomains {Qi}f\’: .
with respective diameters H; which are the union of elements of 77,. The partition
{Q;} is called coarse mesh and is denoted by 7. We then construct overlap-
ping subdomains Q] > Q; by adding layers of elements that are external to €,
and we denote by §; the maximum width of the region Q\Q;; see Figure 1 for
an example of an irregular decomposition obtained using the graph-partitioner
software METIS [14].

We consider the DGM space on each subdomain Q; i.e., we set
Vii={ve L*(Q)) :v|[g € P\(E) VE € Q, v|, = 0 Ve € 0Q}

for each i € {1,...,N}. Thus, the extension operators RiT : Vi — V), can be defined
as the zero-extension operators. The matrix A; associated to the bilinear form
a;(+,) then corresponds to the sub-block of the stiffness matrix A that includes
the degrees of freedom in the interior of /. The matrices A; are positive-definite,
and in every step of the iterative method a linear system involving A; must be
solved for each overlapping subdomain. We use the Cholesky factorization, which
is computed once and then stored for the remainder of each simulation.
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Figure 1: (Left) A domain decomposition with irregular subdomains (black thick lines).
(Right) Coarse mesh 75 (black thick lines) and an overlapping subdomain Q’ (small
triangles) obtained by adding two layers of elements of 77,. '

Remark 1. A one-level additive preconditioned operator can be defined by

N N
Puy =Y Pi= A A, with Al = RIAT'R;.
i=1 i=1

Nevertheless, this preconditioner is not scalable (the condition number of the pre-
conditioned system grows with N); see, e.g., [16, Section 3]. This observation
justifies the necessity of a second level, built usually on the coarse mesh Ty.

3.3. Coarse space and extension operator.

As noted in Remark 1, the preconditioner requires a coarse space V; in order
to obtain a bound for the condition number of the preconditioned system that
is independent of the number of subdomains N. Its dimension has to be small
enough (since every iteration requires solving a linear system with the matrix Ayp),
but large enough such that it includes enough information among all subdomains.
We focus in the case of irregular subdomains as introduced in [10].

Consider the coarse mesh 7y with elements {Q;}Y . The set of subdomain
edges is defined by

Sg:={&",1<i<j<N},

where &7 is the interior of Q; N Q ; (common open edge of subdomains i and j).
If this intersection has more than one component, each one component will be
regarded as an edge of Q;. We then define the set of subdomain vertices, denoted
by 8¢, that contains the endpoints of the subdomain edges that lie inside Q;
see Figure 2.
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22 J. G. CALVO — M. SOLANO

Figure 2: (Left) Two (colored) subdomains, the associated subdomain edge (blue) and
its nodes on the coarse mesh (red). (Right) Subdomains and set of subdomain vertices
(red). Each polygon on the coarse mesh has an average of 15 vertices. There are 108
vertices in 7y and 18 subdomain vertices.

A natural initial choice for Vj is the DGM space (4) defined in 7 if triangular
subdomains are considered, as studied in [13]. We can consider the continuous
space of discrete harmonic functions defined in 7; however, its dimension can be
quite large in the presence of irregular subdomains. Instead, we construct one basis
function per subdomain vertex and Vj is defined as the span of such functions. For
instance, Figure 2 shows only 17 subdomain vertices, compared to 108 nodes in
the polygonal coarse mesh. We restrict ourselves to continuous coarse functions
in order to further reduce the dimension of V), but discontinuous functions can be
considered as well.

Given a subdomain vertex xy € Sq/, we define the values of a coarse function
wfﬂ on every subdomain edge as follows. First, we set gbﬁ) (x) = 0 for all subdomain
vertices x, except at xo where ¢/ (xo) = 1. Second, we define the values of w4
on the subdomain edges. If x( is not an endpoint of &, then zpi’o vanishes on that
edge. If & has endpoints xy and x1, let dg be the unit vector with direction from
x1 to xo. Consider any node ¥ € & If 0 < (¥ — x1) - dg < |x9 — x|, we then set

H /3y (J~c—x1)~d5'

wxo(x) - |x0_x1|

see [3]. It holds that ¢ (xo) = 1, ¢ (x1) = 0 and that the function varies linearly
in the direction of dg for such nodes. If (¥ —x;)-dg < 0 or (¥ —x1)-dg > |xo— x|,
we then set ¢ (¥) = 0 or ¢ (¥) = 1, respectively. Finally, for x € Q;, we construct
the discrete harmonic extension of the previously defined boundary values.

For completeness, we recall that a function u() defined on €; is said to be
discrete harmonic on Q; if

0,0 _ g

AE;)ugl) + Ajpup ’

Rev.Mate. Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 32(1): 15-33, Jan — Jun 2025



A TWO-LEVEL OVERLAPPING SCHWARZ PRECONDITIONER... 23

where A;;) and Af{.) are the standard notation for the subblocks of the stiffness

matrix A®) associated to subdomain €; corresponding to the interior degrees of
freedom I and boundary degrees of freedom T7; see, e.g., [16, Section 4.4]. Similarly,
ugl) and up represent the blocks of u® corresponding to the interior and boundary

(@)

; are defined uniquely by

degrees of freedom. It is clear that the interior values u
its values on the boundary uél).

We then define the coarse space Vj as

Vo = spand¥s dxpesy-

A function ¢ € Vj is uniquely defined by its nodal values on the subdomain vertices,
and therefore

dimVy = |Sy].

The interpolation operator Rg : Vo — Vj, has to approzimate functions in Vy by
functions defined on Vj. In typical studies, such as [13], subdomains are assumed
to be regular (triangles or squares in two dimensions), and it is straightforward to
interpolate a linear or bilinear function from the coarse to the fine mesh; i.e., Rg
is the evaluation of the coarse linear/bilinear function on the fine nodes. When
irregular subdomains are considered, this is not usually possible. We consider
discrete harmonic extensions for simplicity; see [16, Chapter 4] for further details,
even though it is possible to define R! as studied in [3, 4].

We remark that for each subdomain vertex xy we require to solve a linear system
on the subdomains that have xy as a vertex. In Figure 3 we show the degrees of
freedom of a coarse function ¥, # and its extension Rg Yy The columns of the
matrix R} include the values of R}, on the nodes of 7; see [16, Section 3.7].

Figure 3: (Left) Degrees of freedom of a function ¥, n € Vy; empty circles correspond
to nodal values equal to zero. (Right) Extension Rl ¢, » € Vj, computed as a discrete
harmonic extension inside the subdomains.
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24 J. G. CALVO — M. SOLANO

4. IMPLEMENTATION DETAILS

In this section we summarize how the local matrices are computed in order to
assemble the stiffness matrix A. These MATLAB routines are available to download
from [5]. We separate the details for each component of the bilinear form (6), and
provide explicit formulas for the local matrices. We also include a brief description
of the preconditioner construction.

4.1. Integral over elements.

For a triangle E with vertices vy, v,, v3 and associated local basis functions ¢y, ¢;, @3,
it is known that the local matrix associated to the term

J Vo -Vo;, i,je{l1,2,3},
E
can be written exactly as

1 Yy Yz yx
A= — |72y 7z Zx|, 8
! 4|E| x/'; ¥z x'x ®)

where x = v;—vy, y = v3—v;, z = v;—v3. Equation (8) follows from straightforward
computations, given that ¢;,¢; are linear functions with ¢;(xr) = 6, ¢;(xx) = dju
(k € {1,2,3}). In the case of a(¢;,¢;), the contribution of an element E is given
by the integral

| #v0r- 90, = v0-50; | .
E E

and we use a one-point quadrature rule to approximate SE p R~ p(xf)|E |, where
xf is the barycenter of E. Therefore, the matrix All‘)“ given in (8) has to be

multiplied by p(xf).
4.2. Integrals over edges.

Consider now the integrals over the edges of the bilinear form. Given an edge e
shared by elements E{ and E%, let v, v, be the endpoints of e, and v;’,v; the third
vertex of EY and E%, respectively. See Figure 4, which also illustrates the local
ordering for the degrees of freedom. Define the vectors x = v, —vy,y = v; —Vy,2 =
vi—vi,a=v; —vy,b=v —v].
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Figure 4: (Left) An internal edge shared by triangles Ef and ES, with vertices vl,vz,v3+
and vy, v,,v;, respectively. (Right) Local index for degrees of freedom and two local basis
functions ¢,, ¢4.

For the bilinear form b (-, ), we need to compute

1
2 J((PV@)\E'; + (o)) - me(jlee — ¢lEs)

for any internal edge e. Since V¢; is constant on each element, terms of the form
Se p¢; are approximated with a one-point quadrature using the midpoint of e.
Define

y-x y-x xX-a x-a
0 0
ytox yl.-x xt.a xit-a
xX-z Xz b x b-x
M=\ T, % O] N=1.7 I 0l
X N 0 bx v bx Ed 0
ytox ytox xt.a xl-a
where vt := (—v,,v;) for any vector v = (v;,v;). The local matrix associated to

the bilinear form b (-, ) for the edge e can be approximated in block form as

Bloc _ l p+M _p+M
el 7y —p~N o N ’

where p™ = ,0|qu p- = p|E§ are the evaluations of p at the midpoint of e.

For the last bilinear form b, (-, -), we need to compute
o
Tel (Bilk+ — dilk-) - (Sjlk+ — ¢ilk-)

for any interior edge e. The associated local matrix for an interior edge e can be
computed exactly as

2 1 0 —2 -1 0
1 20 -1 -2 0
goc_Te| 0 00 0 00
2 %2 10 2 10
1 =20 1 20

0 00 0 00
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26 J. G. CALVO — M. SOLANO

4.3. Assembling the local matrices.

Once the local edge matrices B’e"i and Bi"; have been assembled, we require a local
to global mapping of degrees of freedom. For an internal edge, according to the
local ordering shown in Figure 4, if elements E{ and ES have global degrees of
freedom [vy,v,,v3] and [v4,vs, v6], then the entries of Bé”f and B’:g must be added
to the entries given by the matrices

Vi Vi Vi Vi Vi WV Vi V2 V3 V4 V5 Vg

Vo Vo Vo Vo Vo Vo Vi V2 V3 V4 V5 Vg

_|v3 vz vy vy V3 V3 .M Vo V3 V4 V5 Vg
b = Ve Va4 V4 va V4 wal|’ b= Vi v vz va vs vel|’

Vs Vs V5 V5 V5 V5 Vi V2 V3 V4 V5 Vg

V¢ V6 Ve Ve Vg Vg Vi V2 V3 V4 V5 Vg

which can be easily obtained with the command meshgrid. Similarly, the 3 x 3
matrices associated to boundary edges are assembled. The local matrix Alloc is
easily assembled according to the degrees of freedom of each triangle.

If Ay, By, B; denote the global matrices obtained by assembling the local matri-

ces Al]"“, Ble"j', Bi"g , respectively, then the global stiffness matrix A is given by

A=A —B — B +B,.

4.4. Preconditioner.

Once the stiffness matrix A is assembled, the action of the additive preconditioner
(7) can be easily computed by defining the operators R! as follows:

1. For i € {1,...,N}, matrices RiT map a vector of degrees of freedom in V;
(nodal values in the interior of Q) to its zero extension in V. Hence, the
j-th column (j € {1,...,N}) of R! is a vector with entries equal to 1 if the
associated node lies in the interior of Q/, and 0 otherwise. It is not necessary
to construct explicitly these matrices, since we only require the indices of the
interior nodes of each overlapping subdomain.

2. For R, it is well-known that the j-th column (j € {1,...,|Sy|[}) of R} has the
value of the coarse function ¢ related to subdomain vertex j evaluated at the
fine  mesh; for the consicion we omit details and refer
to [16, Section 3.7].

5. NUMERICAL RESULTS

We present a first experiment that explores the convergence of DGMs; we then
test our preconditioner (7) for problem (5) with regular (squares) and irregular
(METIS) subdomains [14], with p = 1 and p discontinuous on 77,.
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A TWO-LEVEL OVERLAPPING SCHWARZ PRECONDITIONER... 27

5.1. Convergence of DGM.

For completeness, we first confirm the convergence of our DGM implementation
for structured and unstructured triangular meshes as shown in Figure 5. We
use p(x,x) = 1 and p(x1,x) = xjxp + 1 for the exact solution u(xy,x;) =
sin(zrx; ) sin(7xy), with o, = 10 and o, = 20, respectively. We confirm conver-
gence of order A? as shown in Figure 6.

Figure 5: (Left) Structured and (Right) unstructured triangular mesh.

T ] s
444444 — S = J
A o p = 1 (struc) L /?;s’ ]
10 .0+ p =1 (unstruc) =i
= —x— p=1+z25 (Struc) _ 2“;"
5 —v— p=1+z2> (unstruc) /.'/""'f“
\ — P al
= =7
104F S ]
_ET
=
I’Vﬁ'.
i L e L . EE——
102 h 107

Figure 6: L’-error as a function of 4 for DGM, for a structured and unstructured triangular
mesh as shown in Figure 5, for p(x;,x;) = 1 and p(x1,x) = 1 + x1x,.

5.2. Preconditioner with constant coefficient.

In this section, we present numerical experiments for preconditioner (7) applied
to the linear system obtained using a DGM with p = 1 for structured meshes.
We use o, = 10 and solve the resulting linear systems using the preconditioned
conjugate gradient (PCG) method to a relative residual tolerance of 107°. For
each simulation, we report the number of iterations (I), an approximation for
the condition number of the preconditioned system (k) and the dimension of the
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28 J. G. CALVO — M. SOLANO

coarse space (dim Vy). We recall that authors in [13] obtained similar results for
preconditioning DGM discretizations with triangular subdomains only for p = 1.

First, Table 1 illustrates the dependency on the condition number as we increase
the number of subdomains (scalability). The results indicate that the condition
numbers and the PCG iterations remain bounded as the number of square and
irregular subdomains increases. Second, Table 2 shows that the method does not
depend on H/h. Finally, Figure 7 confirms the linear growth of the condition
number as a function of H/§.

Table 1: Condition number () for the preconditioned system A_'A and number of PGC
iterations (/) as a function of the number of square and irregular subdomains N; dim Vj is
the coarse space dimension and H/h = 16. The case H/§ = 16 corresponds to the minimal
overlap case 6 = h.

His | N Square subdomains METIS subdomains
I (x) dim V I (x) dim Vj

82 | 20 (14.9) 49 37 (20.3) 97

122 ] 20 (14.1) 121 40 (25.0) 243

167 | 20 (13.5) 225 40 (24.7) 447

16 | 20% | 18 (13.8) 361 48 (38.6) 711

247 117 (13.9) 529 43 (27.6) 1054

287 | 17 (14.1) 729 45 (29.6) 1456

327117 (14.1) 961 48 (35.8) 1915

82 | 15 (6.2) 49 25 (9.3) 97

122 | 14 (6.0) 121 26 (9.8) 243

162 | 14 (5.8) 225 26 (11.0) 447

4 [20%| 14 (5.7) 361 29 (13.2) 711

2471 14 (5.7) 529 27 (10.3) 1054

287 | 14 (5.7) 729 29 (11.9) 1456

322| 14 (5.7) 961 31 (15.0) 1915

Table 2: Condition number (k) for the preconditioned system A;dlA and number of PCG
iterations (I) as a function of H/h for square and irregular subdomains, N = 36, H/§ = 4
and p = 1; dim Vj is the coarse space dimension.

H/h Square subdomains METIS subdomains
I(k) dim Vp I(k) dim V,
8 15 (5.3) 25 24 (10.9) 48
16 | 15 (5.8) 25 25 (10.8) 48
32 | 16 (6.3) 25 25 (10.8) 48
64 | 17 (6.4) 25 26 (10.7) 48

Rev.Mate. Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 32(1): 15-33, Jan — Jun 2025



A TWO-LEVEL OVERLAPPING SCHWARZ PRECONDITIONER... 29

60 T T T T //
e Square subdomains A4 -
40 LL° METIS subdomains | =" )
% P
p/
20_ G’/e/ ———-——_-____._
o __,__--0—'—"———_
O 1 1 1 1
0 5 10 15 20 25

H/S

Figure 7: Condition number « as a function of H/§ for N = 64, H/h = 24 and p = 1, for
square and METIS subdomains. The dashed red lines represent the best linear fits for
the data, with approximate slopes of 0.69 and 2.29, respectively.

5.3. Preconditioner with variable coefficients.

We now present numerical results for two different choices of p(x) shown in
Figure 8: (i) a piecewise constant p on each subdomain, and (ii) a channel distri-
bution where p = 10° for the red channels, and p = 1 in the background (called
in literature as a high-contrast multiscale coefficient). We confirm scalability and
study dependence on H/h and H/§ in Table 3, Table 4 and Figure 9 for the case
of a random piecewise constant coefficient p. We use o, = 10*.
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Figure 8: Coefficient p for two experiments: (Left) p is constant inside each subdo-
main varying from 1073 (blue) to 10° (red). (Right) p = 10* in the red channels and
p = 1 otherwise.
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Table 3: Condition number (k) for the preconditioned system Aa_d]A and number of PGC
iterations (/) as a function of the number of square and irregular subdomains N; dim V

is the coarse space dimension, H/h = 16, H/§ = 4 and p is piecewise constant as

in Figure 8.
N Square subdomains METIS subdomains

1(x) dim Vj I(x) dim Vj

82 | 24 (8.7) 49 29 (10.5) 97
127 [ 28 (10.8) 121 26 (8.6) 243
167 | 32 (12.1) 225 28 (8.9) 447
207 | 32 (12.4) 361 31 (11.3) 711
242 1 33 (12.5) 529 33 (12.4) 1054
287 | 32 (12.4) 729 35 (13.0) 1456
322 | 32 (12.4) 961 33 (13.2) 1915

Table 4: Condition number (k) for the preconditioned system A;llA and number of PCG
iterations (I) as a function of H/h for square and irregular subdomains, N = 36 and
H/§ = 4; dim V, is the coarse space dimension. We use a piecewise constant coefficient p

as shown in Figure 8.

Hh Square subdomains METIS subdomains
1 (K) dim VQ 1 (K) dim V()
8 22 (6.8) 25 29 (11.0) 48
16 | 22 (7.0) 25 26 (11.6) 48
32 22 (6.7) 25 27 (11.2) 48
64 | 24 (8.4) 25 29 (11.0) 48
30 T T T T — O
e Square subdomains P
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s/ﬁii’“///’
10 C = F 1 1 1 ]
0 5 10 15 20 25
H/6

Figure 9: Condition number « as a function of H/§ for N = 64 and H/h = 24, for square
and METIS subdomains. We use a piecewise constant coefficient p as shown in Figure 8.
The dashed red lines represent the best linear fits for the data, with approximate slopes
of 0.53 and 0.99, respectively.

It is known that the performance of iterative methods depends on the contrast
n = maxp(x)/minp(x). Therefore, competitive results are not expected for the
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high-contrast channels shown in Figure 8. As observed in Table 5, the method
deteriorates as the number of subdomains increases, with some favourable cases
when METIS subdomains are used. However, in general we obtain that « is of
order n. We refer to [6] for a recent work on continuous two-level overlapping
methods and references therein for a detailed explanation on previous work for the
case of high-contrast coefficients, which can be used for DGMs.

Table 5: Condition number () for the preconditioned system A_'A and number of PGC
iterations (/) as a function of the number of square and irregular subdomains N; dim V
is the coarse space dimension, H/h = 16, H/6 = 4 and p has a channel distribution as
in Figure 8.

N Square subdomains METIS subdomains
I(x) dim Vj I(x) dim Vj
64 | 51 (220) 49 79 (243) 97
144 | 53 (221) 121 66 (204) 243
256 | 52 (179) 225 41 (19.6) 447
400 | 65 (214) 361 39 (16.8) 711

6. CONCLUSIONS AND FINAL REMARKS

We have presented a two-level overlapping Schwarz preconditioner for discontinu-
ous Galerkin Methods, designed for irregular subdomains and piecewise constant
coefficients p aligned with the subdomain decomposition. Our results demonstrate
scalability and linear dependence on H/§, consistent with previous studies that
consider triangular subdomains or continuous function spaces. This extends the
applicability of our algorithm beyond studies such as [13], building upon the con-
cept of virtual spaces analyzed in [3]. Besides a theoretical framework for analyzing
the condition number of the preconditioned system, future work includes the use
of adaptive algorithms like the one analyzed in [6] for high-contrast multiscale co-
efficients, as well as a generalization to discontinuous virtual element spaces, where
{71} can include more general polygonal partitions of Q.
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