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Abstract

This article introduces a two-level overlapping additive Schwarz algorithm
tailored for solving elliptic problems discretized with the symmetric interior
penalty discontinuous Galerkin method. The proposed algorithm allows for
the use of irregular subdomains, overcoming limitations of other approaches
where the coarse mesh was based on triangular elements. Additionally, we
provide a brief description of the numerical implementation of the Galerkin
method. We present numerical results validating the relevance of our al-
gorithm, including cases where the coefficient of the differential equation
is discontinuous—a feature that is particularly relevant to various practical
applications.

Keywords: domain decomposition; discontinuous Galerkin methods; irregular subdomain
boundaries; overlapping Schwarz algorithms; nodal elliptic problems.

Resumen

Este art́ıculo presenta un algoritmo aditivo de Schwarz de dos niveles con
traslape diseñado para resolver problemas eĺıpticos discretizados con el mé-
todo Galerkin discontinuo de penalización interior simétrico. El algoritmo
propuesto permite utilizar subdominios irregulares, superando limitaciones
de otros enfoques donde la malla gruesa se basaba en elementos triangulares.
Se incluye además una breve descripción de la implementación numérica del
método de Galerkin. Se presentan resultados numéricos que validan la per-
tinencia del método, incluyendo casos donde el coeficiente de la ecuación
diferencial es discontinuo, una caracteŕıstica que es relevante en diversas
aplicaciones.

Palabras clave: descomposición de dominios; métodos discontinuos de Galerkin; subdo-

minios con frontera irregular; algoritmos con traslape de Schwarz; problemas

eĺıpticos nodales.

Mathematics Subject Classification: Primary: 65F08, 65F10. Secondary: 65N30,
65N55.

1. Introduction

In this paper we study a preconditioner suitable for linear systems that arise
from the discretization of partial differential equations (PDEs) using discontinuous
Galerkin methods (DGMs). We focus on Poisson’s equation on a given polygonal
domain Ω Ă R2 with homogeneous Dirichlet boundary conditions:

´divpρ∇uq “ f in Ω,
u “ 0 on BΩ,

(1)

where ρ is a given coefficient. Let H1
0pΩq denote the usual Sobolev space consisting

of all functions u P L2pΩq, such that ∇u P pL2pΩqq2, with vanishing trace. A weak
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a two-level overlapping schwarz preconditioner... 17

formulation for problem (1) is posed in H1
0pΩq, which is given by: Find u P H1

0pΩq

such that

apu, vq :“
ż

Ω

ρ∇u ¨ ∇v “

ż

Ω

f v “: p f , vq0 @v P H1
0pΩq, (2)

where ρ P L8pΩq is a function such that ρpxq ě α ą 0 for some constant α.

We define a finite-dimensional space Vh and a symmetric positive definite bi-
linear form

ahp¨, ¨q : Vh ˆ Vh Ñ R,

in order to formulate the discrete problem: Find uh P Vh such that

ahpuh, vhq “ p f , vhq0 @vh P Vh. (3)

If xϕ1, . . . , ϕmy is a basis of Vh, problem (3) is equivalent to an ill-conditioned linear
system of equations of the form Aλ “ b, where the matrix A P Rmˆm has entries
Ai j “ ahpϕ j, ϕiq for i, j P t1, . . . ,mu, the vector b P Rm has entries b j “ p f , ϕ jq0, and
the unknown vector λ P Rm contains the coordinates of the solution uh in the basis
of Vh; i.e., uh “

řm
j“1 λiϕi P Vh.

The class of discontinuous Galerkin methods can be traced back to [2], where
a fourth-order PDE is solved with piecewise polynomials that are not necessarily
continuous. For a comprehensive analysis of these methods and their applications,
see [1, 7, 8, 15] and the references therein. DGMs offer advantages such as the
use of non-uniform and unstructured meshes, as well as solving time-dependent
problems with time discretizations [12]. However, since the total number of degrees
of freedom is greater than when using continuous spaces, it is relevant to study
preconditioning methods for these linear systems.

Previous studies related to overlapping Schwarz methods for DGMs include
[11, 12, 13], where the coarse triangulation is based on triangles. We instead con-
sider general domain decompositions and define an algorithm suitable for irregular
partitions, which are relevant for various practical applications. Additionally, we
experimentally confirm that our algorithm is effective for piecewise-discontinuous
coefficients ρ in (1), as opposed to previous works assuming ρpxq “ 1. These
studies deduce a bound of the form

κ ď C
ˆ

1 `
H
δ

˙

for the condition number κ of the preconditioned system, where C is independent
of the number of subdomains and the size of the elements. The parameter H{δ
represents the maximum ratio of the diameter Hi of the subdomain Ωi and the
overlap width δi of the corresponding overlapping subdomain Ω1

i; see Section 3.2
for further details. Our algorithm preserves this bound despite using irregular
subdomains.

For conforming spaces, discrete harmonic functions were introduced to handle
irregular subdomains in [10]. While there are alternative methods to avoid such
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expensive construction [3, 4], we consider discrete harmonic extensions for the sake
of simplicity; see [16, Chapter 4] for further details. We refer to [3, 4] for a complete
study and implementation details on economic variants based on projections over
polynomial spaces for the case of continuous spaces.

The remainder of the paper is organized as follows. In Section 2, we briefly
describe a DGM for problem (1), focusing solely on a symmetric variant. We then
describe the general theory of Schwarz preconditioners and our preconditioner for
the discretized problem in Section 3. In Section 4, we include some implementa-
tion details for DGMs applied to problem (1). Some numerical experiments that
confirm the algorithm’s competitiveness are shown in Section 5. We conclude with
some final remarks in Section 6.

2. Discontinuous Galerkin method

We briefly describe the lowest-order DGM for nodal elliptic problems in two di-
mensions for our model problem (1); see [1] for a unified analysis of discontinuous
Galerkin methods for elliptic problems, [8, 15] for a complete study, [7] for an
interior penalty DGM applied to meshes with arbitrarily-shaped elements, and [5]
where our numerical implementation of the method can be downloaded.

For the discretization of (2), let tThuhą0 be a family of triangulations of Ω with
diameter h, composed of general, simple triangular elements. See Section 5 for
examples of the meshes considered in our numerical experiments. For an element
E P Th, denote by P1pEq the local space of linear polynomials defined in E. We can
choose the degrees of freedom for a function v P P1pEq as its nodal values on the
vertices of the polygon E. Globally, the non-conforming DGM space Vh Ć H1

0pΩq

is defined as

Vh :“ tv P L2pΩq : v|E P P1pEq @E P Thu. (4)

We follow [9, 15]. Denote by Ei
h and Eb

h the set of edges of Th in the interior and
boundary of Ω, respectively, and let Eh :“ Ei

h Y Eb
h. For each interior edge e P Ei

h,
let Ee

1 and Ee
2 be the two elements that share e, and ne the unit normal vector

oriented from Ee
1 to Ee

2. For a discontinuous function v, we define its average and
jump along an interior edge e P Ei

h as

tvue :“
1
2

`

v|Ee
1

` v|Ee
2

˘

, rvse :“ v|Ee
1

´ v|Ee
2
,

respectively. If e P Eb
h is a boundary edge that belongs to the element Ee

1, we
simply define

tvue “ rvse “ v|Ee
1
.

We omit the subscript e when there is no ambiguity.
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The weak formulation of problem (1) is given by

ÿ

EPTh

ż

E
ρ∇u ¨ ∇v ´

ÿ

ePEh

ż

e
tρ∇u ¨ neurvs

´
ÿ

ePEh

ż

e
tρ∇v ¨ neurus `

ÿ

ePEh

σe

|e|

ż

e
rusrvs “

ÿ

KPTh

ż

K
f v,

where tσeue are given positive stability constants and |e| is the length of edge e;
see, e.g., [9, Section 4.2]. We end up with the symmetric discrete problem: Find
u P Vh such that

ahpu, vq “ p f , vq0 @v P Vh, (5)

where

ahpu, vq :“ apu, vq ´ b1pu, vq ´ b1pv, uq ` b2pu, vq, (6)

and

b1pu, vq :“
ÿ

ePEh

ż

e
tρ∇u ¨ neurvs, b2pu, vq :“

ÿ

ePEh

σe

|e|

ż

e
rusrvs.

For brevity, we omit details regarding the well-posedness of problem (5) and a
priori estimates; for a comprehensive study, see [8, 9, 15]. It is worth noting
that we are considering only the symmetric interior penalty Galerkin variant for
simplicity, although other variants of DGM have been widely studied [1].

3. Two-level overlapping Schwarz preconditioner

We describe the standard two-level overlapping Schwarz preconditioner;
see [16, Chapter 3] for the abstract Schwarz theory, [16, Chapter 4] for the case
of overlapping methods, [3, 4, 10, 17] for specific applications with irregular sub-
domains, and [6] for a recent study where the coefficient ρ has large variations
(referred as a high-contrast coefficient).

3.1. Abstract Schwarz theory.

We focus on preconditioning the linear system Aλ “ b that arises from problem (3)
with DGMs. Assume there is a family of spaces tViu

N
i“0 and interpolation operators

RT
i : Vi Ñ Vh such that

Vh “ RT
0 V0 `

N
ÿ

i“1

RT
i Vi.

The space V0 is called coarse space, while the spaces Vi pi P t1, . . . ,Nuq are called
local spaces. We then introduce symmetric, positive definite bilinear forms on
these subspaces,

aip¨, ¨q : Vi ˆ Vi Ñ R, i P t0, . . . ,Nu.
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20 j. g. calvo – m. solano

For simplicity, we choose

aipui, viq :“ ahpRT
i ui,RT

i viq, ui, vi P Vi;

this choice is referred to as exact solvers. In this case, the local stiffness matrix
Ai : Vi Ñ Vi associated to aip¨, ¨q is given by Ai “ RiART

i , where Ri “ pRT
i qT . Schwarz

operators are defined as

Pi :“ RT
i A´1

i RiA, i P t0, 1, . . . ,Nu,

and the two-level additive Schwarz preconditioner is defined as

Pad :“
N
ÿ

i“0

Pi.

The associated preconditioned linear system can be written as

Padu “ A´1
ad Au “ A´1

ad b,

with

A´1
ad :“

N
ÿ

i“0

RT
i A´1

i Ri “

N
ÿ

i“0

RT
i pRiART

i q´1Ri. (7)

We remark that the preconditioner A´1
ad is determined once we define the operators

RT
i . For the local spaces, defining these operators is straightforward; however, for

the coarse space, extra work is usually required when irregular subdomains are
present. We describe such constructions in the following sections.

3.2. Local spaces.

We partition the domain Ω into N non-overlapping disjoint subdomains tΩiu
N
i“1

with respective diameters Hi which are the union of elements of Th. The partition
tΩiu is called coarse mesh and is denoted by TH. We then construct overlap-
ping subdomains Ω1

i Ą Ωi by adding layers of elements that are external to Ωi,
and we denote by δi the maximum width of the region Ω1

izΩi; see Figure 1 for
an example of an irregular decomposition obtained using the graph-partitioner
software METIS [14].

We consider the DGM space on each subdomain Ω1
i; i.e., we set

Vi :“ tv P L2pΩ1
iq : v|E P P1pEq @E P Ω1

i , v|e “ 0 @e P BΩ1
iu

for each i P t1, . . . ,Nu. Thus, the extension operators RT
i : Vi Ñ Vh can be defined

as the zero-extension operators. The matrix Ai associated to the bilinear form
aip¨, ¨q then corresponds to the sub-block of the stiffness matrix A that includes
the degrees of freedom in the interior of Ω1

i. The matrices Ai are positive-definite,
and in every step of the iterative method a linear system involving Ai must be
solved for each overlapping subdomain. We use the Cholesky factorization, which
is computed once and then stored for the remainder of each simulation.
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Figure 1: (Left) A domain decomposition with irregular subdomains (black thick lines).
(Right) Coarse mesh TH (black thick lines) and an overlapping subdomain Ω1

j (small
triangles) obtained by adding two layers of elements of Th.

Remark 1. A one-level additive preconditioned operator can be defined by

Pad,1 :“
N
ÿ

i“1

Pi “ A´1
ad A, with A´1

ad “

N
ÿ

i“1

RT
i A´1

i Ri.

Nevertheless, this preconditioner is not scalable (the condition number of the pre-
conditioned system grows with N); see, e.g., [16, Section 3]. This observation
justifies the necessity of a second level, built usually on the coarse mesh TH.

3.3. Coarse space and extension operator.

As noted in Remark 1, the preconditioner requires a coarse space V0 in order
to obtain a bound for the condition number of the preconditioned system that
is independent of the number of subdomains N. Its dimension has to be small
enough (since every iteration requires solving a linear system with the matrix A0),
but large enough such that it includes enough information among all subdomains.
We focus in the case of irregular subdomains as introduced in [10].

Consider the coarse mesh TH with elements tΩiu
N
i“1. The set of subdomain

edges is defined by

SE :“
␣

Ei j, 1 ď i ă j ď N
(

,

where Ei j is the interior of Ωi X Ω j (common open edge of subdomains i and j).
If this intersection has more than one component, each one component will be
regarded as an edge of Ωi. We then define the set of subdomain vertices, denoted
by SV, that contains the endpoints of the subdomain edges that lie inside Ω;
see Figure 2.
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22 j. g. calvo – m. solano

Figure 2: (Left) Two (colored) subdomains, the associated subdomain edge (blue) and
its nodes on the coarse mesh (red). (Right) Subdomains and set of subdomain vertices
(red). Each polygon on the coarse mesh has an average of 15 vertices. There are 108
vertices in TH and 18 subdomain vertices.

A natural initial choice for V0 is the DGM space (4) defined in TH if triangular
subdomains are considered, as studied in [13]. We can consider the continuous
space of discrete harmonic functions defined in TH; however, its dimension can be
quite large in the presence of irregular subdomains. Instead, we construct one basis
function per subdomain vertex and V0 is defined as the span of such functions. For
instance, Figure 2 shows only 17 subdomain vertices, compared to 108 nodes in
the polygonal coarse mesh. We restrict ourselves to continuous coarse functions
in order to further reduce the dimension of V0, but discontinuous functions can be
considered as well.

Given a subdomain vertex x0 P SV, we define the values of a coarse function
ψH

x0
on every subdomain edge as follows. First, we set ψH

x0
pxq “ 0 for all subdomain

vertices x, except at x0 where ψH
x0

px0q “ 1. Second, we define the values of ψH
x0

on the subdomain edges. If x0 is not an endpoint of E, then ψH
x0

vanishes on that
edge. If E has endpoints x0 and x1, let dE be the unit vector with direction from
x1 to x0. Consider any node rx P E. If 0 ď prx ´ x1q ¨ dE ď |x0 ´ x1|, we then set

ψH
x0

prxq “
prx ´ x1q ¨ dE

|x0 ´ x1|
;

see [3]. It holds that ψH
x0

px0q “ 1, ψH
x0

px1q “ 0 and that the function varies linearly
in the direction of dE for such nodes. If prx ´ x1q ¨ dE ă 0 or prx ´ x1q ¨ dE ą |x0 ´ x1|,
we then set ψH

x0
prxq “ 0 or ψH

x0
prxq “ 1, respectively. Finally, for x P Ωi, we construct

the discrete harmonic extension of the previously defined boundary values.

For completeness, we recall that a function upiq defined on Ωi is said to be
discrete harmonic on Ωi if

Apiq
II upiq

I ` Apiq
IΓ upiq
Γ

“ 0,
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where Apiq
II and Apiq

IΓ are the standard notation for the subblocks of the stiffness

matrix Apiq associated to subdomain Ωi corresponding to the interior degrees of
freedom I and boundary degrees of freedom Γ; see, e.g., [16, Section 4.4]. Similarly,

upiq
I and upiq

Γ
represent the blocks of upiq corresponding to the interior and boundary

degrees of freedom. It is clear that the interior values upiq
I are defined uniquely by

its values on the boundary upiq
Γ
.

We then define the coarse space V0 as

V0 “ spanxψH
x0

yx0PSV .

A function ψ P V0 is uniquely defined by its nodal values on the subdomain vertices,
and therefore

dim V0 “ |SV| .

The interpolation operator RT
0 : V0 Ñ Vh has to approximate functions in V0 by

functions defined on Vh. In typical studies, such as [13], subdomains are assumed
to be regular (triangles or squares in two dimensions), and it is straightforward to
interpolate a linear or bilinear function from the coarse to the fine mesh; i.e., RT

0
is the evaluation of the coarse linear/bilinear function on the fine nodes. When
irregular subdomains are considered, this is not usually possible. We consider
discrete harmonic extensions for simplicity; see [16, Chapter 4] for further details,
even though it is possible to define RT

0 as studied in [3, 4].

We remark that for each subdomain vertex x0 we require to solve a linear system
on the subdomains that have x0 as a vertex. In Figure 3 we show the degrees of
freedom of a coarse function ψx0

H and its extension RT
0ψx0

H . The columns of the
matrix RT

0 include the values of RT
0ψx0

H on the nodes of Th; see [16, Section 3.7].

Figure 3: (Left) Degrees of freedom of a function ψx0H P V0; empty circles correspond
to nodal values equal to zero. (Right) Extension RT

0ψx0H P Vh computed as a discrete
harmonic extension inside the subdomains.
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4. Implementation details

In this section we summarize how the local matrices are computed in order to
assemble the stiffness matrix A. These MATLAB routines are available to download
from [5]. We separate the details for each component of the bilinear form (6), and
provide explicit formulas for the local matrices. We also include a brief description
of the preconditioner construction.

4.1. Integral over elements.

For a triangle E with vertices v1, v2, v3 and associated local basis functions ϕ1, ϕ2, ϕ3,
it is known that the local matrix associated to the term

ż

E
∇ϕi ¨ ∇ϕ j, i, j P t1, 2, 3u,

can be written exactly as

Aloc
1 “

1
4|E|

¨

˝

y1y y1 z y1x
z1y z1 z z1x
x1y x1 z x1x

˛

‚, (8)

where x “ v2´v1, y “ v3´v2, z “ v1´v3. Equation (8) follows from straightforward
computations, given that ϕi, ϕ j are linear functions with ϕipxkq “ δik, ϕ jpxkq “ δ jk

(k P t1, 2, 3u). In the case of apϕi, ϕ jq, the contribution of an element E is given
by the integral

ż

E
ρ∇ϕi ¨ ∇ϕ j “ ∇ϕi ¨ ∇ϕ j

ż

E
ρ,

and we use a one-point quadrature rule to approximate
ş

E ρ « ρpxE
b q|E|, where

xE
b is the barycenter of E. Therefore, the matrix Aloc

1 given in (8) has to be
multiplied by ρpxE

b q.

4.2. Integrals over edges.

Consider now the integrals over the edges of the bilinear form. Given an edge e
shared by elements Ee

1 and Ee
2, let v1, v2 be the endpoints of e, and v`

3 , v
´

3 the third
vertex of Ee

1 and Ee
2, respectively. See Figure 4, which also illustrates the local

ordering for the degrees of freedom. Define the vectors x “ v2 ´v1, y “ v`

3 ´v2, z “

v1 ´ v`

3 , a “ v´

3 ´ v2, b “ v1 ´ v´

3 .
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Figure 4: (Left) An internal edge shared by triangles Ee
1 and Ee

2, with vertices v1, v2, v`

3
and v1, v2, v´

3 , respectively. (Right) Local index for degrees of freedom and two local basis
functions ϕ2, ϕ4.

For the bilinear form b1p¨, ¨q, we need to compute

1
2

ż

e
ppρ∇ϕiq|Ee

1
` pρ∇ϕiq|Ee

2
q ¨ nepϕ j|Ee

1
´ ϕ j|Ee

2
q

for any internal edge e. Since ∇ϕi is constant on each element, terms of the form
ş

e ρϕ j are approximated with a one-point quadrature using the midpoint of e.
Define

M “

¨

˚

˚

˚

˚

˝

y ¨ x
yK ¨ x

y ¨ x
yK ¨ x

0
x ¨ z

xK ¨ z
x ¨ z

xK ¨ z
0

x ¨ x
yK ¨ x

x ¨ x
yK ¨ x

0

˛

‹

‹

‹

‹

‚

, N “

¨

˚

˚

˚

˚

˝

x ¨ a
xK ¨ a

x ¨ a
xK ¨ a

0
b ¨ x

bK
¨ x

b ¨ x
bK

¨ x
0

x ¨ x
xK ¨ a

x ¨ x
xK ¨ a

0

˛

‹

‹

‹

‹

‚

,

where vK :“ p´v2, v1q for any vector v “ pv1, v2q. The local matrix associated to
the bilinear form b1p¨, ¨q for the edge e can be approximated in block form as

Bloc
e,1 “

1
4

„

ρ`M ´ρ`M
´ρ´N ρ´N

ȷ

,

where ρ` “ ρ|Ee
1
, ρ´ “ ρ|Ee

2
are the evaluations of ρ at the midpoint of e.

For the last bilinear form b2p¨, ¨q, we need to compute

σe

|e|

ż

e
pϕi|K` ´ ϕi|K´ q ¨ pϕ j|K` ´ ϕ j|K´ q

for any interior edge e. The associated local matrix for an interior edge e can be
computed exactly as

Bloc
e,2 “

σe

6

»

—

—

—

—

—

—

–

2 1 0 ´2 ´1 0
1 2 0 ´1 ´2 0
0 0 0 0 0 0

´2 ´1 0 2 1 0
´1 ´2 0 1 2 0

0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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4.3. Assembling the local matrices.

Once the local edge matrices Bloc
e,1 and Bloc

e,2 have been assembled, we require a local
to global mapping of degrees of freedom. For an internal edge, according to the
local ordering shown in Figure 4, if elements Ee

1 and Ee
2 have global degrees of

freedom rv1, v2, v3s and rv4, v5, v6s, then the entries of Bloc
e,1 and Bloc

e,2 must be added
to the entries given by the matrices

ix “

»

—

—

—

—

—

—

–

v1 v1 v1 v1 v1 v1
v2 v2 v2 v2 v2 v2
v3 v3 v3 v3 v3 v3
v4 v4 v4 v4 v4 v4
v5 v5 v5 v5 v5 v5
v6 v6 v6 v6 v6 v6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, iy “

»

—

—

—

—

—

—

–

v1 v2 v3 v4 v5 v6
v1 v2 v3 v4 v5 v6
v1 v2 v3 v4 v5 v6
v1 v2 v3 v4 v5 v6
v1 v2 v3 v4 v5 v6
v1 v2 v3 v4 v5 v6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

which can be easily obtained with the command meshgrid. Similarly, the 3 ˆ 3
matrices associated to boundary edges are assembled. The local matrix Aloc

1 is
easily assembled according to the degrees of freedom of each triangle.

If A1, B1, B2 denote the global matrices obtained by assembling the local matri-
ces Aloc

1 , Bloc
e,1, B

loc
e,2, respectively, then the global stiffness matrix A is given by

A “ A1 ´ B1 ´ BT
1 ` B2.

4.4. Preconditioner.

Once the stiffness matrix A is assembled, the action of the additive preconditioner
(7) can be easily computed by defining the operators RT

i as follows:

1. For i P t1, . . . ,Nu, matrices RT
i map a vector of degrees of freedom in Vi

(nodal values in the interior of Ω1
i) to its zero extension in Vh. Hence, the

j-th column ( j P t1, . . . ,Nu) of RT
i is a vector with entries equal to 1 if the

associated node lies in the interior of Ω1
i, and 0 otherwise. It is not necessary

to construct explicitly these matrices, since we only require the indices of the
interior nodes of each overlapping subdomain.

2. For RT
0 , it is well-known that the j-th column ( j P t1, . . . , |SV|u) of RT

0 has the
value of the coarse function ψ related to subdomain vertex j evaluated at the
fine mesh; for the consicion we omit details and refer
to [16, Section 3.7].

5. Numerical results

We present a first experiment that explores the convergence of DGMs; we then
test our preconditioner (7) for problem (5) with regular (squares) and irregular
(METIS) subdomains [14], with ρ “ 1 and ρ discontinuous on Th.
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5.1. Convergence of DGM.

For completeness, we first confirm the convergence of our DGM implementation
for structured and unstructured triangular meshes as shown in Figure 5. We
use ρpx1, x2q “ 1 and ρpx1, x2q “ x1x2 ` 1 for the exact solution upx1, x2q “

sinpπx1q sinpπx2q, with σe “ 10 and σe “ 20, respectively. We confirm conver-
gence of order h2 as shown in Figure 6.

Figure 5: (Left) Structured and (Right) unstructured triangular mesh.

10
-2

10
-1

10
-4

10
-2

Figure 6: L2-error as a function of h for DGM, for a structured and unstructured triangular
mesh as shown in Figure 5, for ρpx1, x2q “ 1 and ρpx1, x2q “ 1 ` x1 x2.

5.2. Preconditioner with constant coefficient.

In this section, we present numerical experiments for preconditioner (7) applied
to the linear system obtained using a DGM with ρ “ 1 for structured meshes.
We use σe “ 10 and solve the resulting linear systems using the preconditioned
conjugate gradient (PCG) method to a relative residual tolerance of 10´6. For
each simulation, we report the number of iterations (I), an approximation for
the condition number of the preconditioned system (κ) and the dimension of the
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coarse space (dim V0). We recall that authors in [13] obtained similar results for
preconditioning DGM discretizations with triangular subdomains only for ρ “ 1.

First, Table 1 illustrates the dependency on the condition number as we increase
the number of subdomains (scalability). The results indicate that the condition
numbers and the PCG iterations remain bounded as the number of square and
irregular subdomains increases. Second, Table 2 shows that the method does not
depend on H{h. Finally, Figure 7 confirms the linear growth of the condition
number as a function of H{δ.

Table 1: Condition number (κ) for the preconditioned system A´1
ad A and number of PGC

iterations (I) as a function of the number of square and irregular subdomains N; dim V0 is
the coarse space dimension and H{h “ 16. The case H{δ “ 16 corresponds to the minimal
overlap case δ “ h.

H{δ N
Square subdomains METIS subdomains

I pκq dim V0 I pκq dim V0

16

82 20 (14.9) 49 37 (20.3) 97
122 20 (14.1) 121 40 (25.0) 243
162 20 (13.5) 225 40 (24.7) 447
202 18 (13.8) 361 48 (38.6) 711
242 17 (13.9) 529 43 (27.6) 1054
282 17 (14.1) 729 45 (29.6) 1456
322 17 (14.1) 961 48 (35.8) 1915

4

82 15 (6.2) 49 25 (9.3) 97
122 14 (6.0) 121 26 (9.8) 243
162 14 (5.8) 225 26 (11.0) 447
202 14 (5.7) 361 29 (13.2) 711
242 14 (5.7) 529 27 (10.3) 1054
282 14 (5.7) 729 29 (11.9) 1456
322 14 (5.7) 961 31 (15.0) 1915

Table 2: Condition number (κ) for the preconditioned system A´1
ad A and number of PCG

iterations (I) as a function of H{h for square and irregular subdomains, N “ 36, H{δ “ 4
and ρ “ 1; dim V0 is the coarse space dimension.

H{h
Square subdomains METIS subdomains

Ipκq dim V0 Ipκq dim V0

8 15 (5.3) 25 24 (10.9) 48
16 15 (5.8) 25 25 (10.8) 48
32 16 (6.3) 25 25 (10.8) 48
64 17 (6.4) 25 26 (10.7) 48
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Figure 7: Condition number κ as a function of H{δ for N “ 64, H{h “ 24 and ρ “ 1, for
square and METIS subdomains. The dashed red lines represent the best linear fits for
the data, with approximate slopes of 0.69 and 2.29, respectively.

5.3. Preconditioner with variable coefficients.

We now present numerical results for two different choices of ρpxq shown in
Figure 8: (i) a piecewise constant ρ on each subdomain, and (ii) a channel distri-
bution where ρ “ 103 for the red channels, and ρ “ 1 in the background (called
in literature as a high-contrast multiscale coefficient). We confirm scalability and
study dependence on H{h and H{δ in Table 3, Table 4 and Figure 9 for the case
of a random piecewise constant coefficient ρ. We use σe “ 104.

Figure 8: Coefficient ρ for two experiments: (Left) ρ is constant inside each subdo-
main varying from 10´3 (blue) to 103 (red). (Right) ρ “ 103 in the red channels and
ρ “ 1 otherwise.
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Table 3: Condition number (κ) for the preconditioned system A´1
ad A and number of PGC

iterations (I) as a function of the number of square and irregular subdomains N; dim V0

is the coarse space dimension, H{h “ 16, H{δ “ 4 and ρ is piecewise constant as
in Figure 8.

N
Square subdomains METIS subdomains

Ipκq dim V0 Ipκq dim V0

82 24 (8.7) 49 29 (10.5) 97
122 28 (10.8) 121 26 (8.6) 243
162 32 (12.1) 225 28 (8.9) 447
202 32 (12.4) 361 31 (11.3) 711
242 33 (12.5) 529 33 (12.4) 1054
282 32 (12.4) 729 35 (13.0) 1456
322 32 (12.4) 961 33 (13.2) 1915

Table 4: Condition number (κ) for the preconditioned system A´1
ad A and number of PCG

iterations pIq as a function of H{h for square and irregular subdomains, N “ 36 and
H{δ “ 4; dim V0 is the coarse space dimension. We use a piecewise constant coefficient ρ
as shown in Figure 8.

H{h
Square subdomains METIS subdomains

I pκq dim V0 I pκq dim V0

8 22 (6.8) 25 29 (11.0) 48
16 22 (7.0) 25 26 (11.6) 48
32 22 (6.7) 25 27 (11.2) 48
64 24 (8.4) 25 29 (11.0) 48

0 5 10 15 20 25

10

20

30

Figure 9: Condition number κ as a function of H{δ for N “ 64 and H{h “ 24, for square
and METIS subdomains. We use a piecewise constant coefficient ρ as shown in Figure 8.
The dashed red lines represent the best linear fits for the data, with approximate slopes
of 0.53 and 0.99, respectively.

It is known that the performance of iterative methods depends on the contrast
η “ max ρpxq{ min ρpxq. Therefore, competitive results are not expected for the
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high-contrast channels shown in Figure 8. As observed in Table 5, the method
deteriorates as the number of subdomains increases, with some favourable cases
when METIS subdomains are used. However, in general we obtain that κ is of
order η. We refer to [6] for a recent work on continuous two-level overlapping
methods and references therein for a detailed explanation on previous work for the
case of high-contrast coefficients, which can be used for DGMs.

Table 5: Condition number (κ) for the preconditioned system A´1
ad A and number of PGC

iterations (I) as a function of the number of square and irregular subdomains N; dim V0

is the coarse space dimension, H{h “ 16, H{δ “ 4 and ρ has a channel distribution as
in Figure 8.

N
Square subdomains METIS subdomains

Ipκq dim V0 Ipκq dim V0

64 51 (220) 49 79 (243) 97
144 53 (221) 121 66 (204) 243
256 52 (179) 225 41 (19.6) 447
400 65 (214) 361 39 (16.8) 711

6. Conclusions and final remarks

We have presented a two-level overlapping Schwarz preconditioner for discontinu-
ous Galerkin Methods, designed for irregular subdomains and piecewise constant
coefficients ρ aligned with the subdomain decomposition. Our results demonstrate
scalability and linear dependence on H{δ, consistent with previous studies that
consider triangular subdomains or continuous function spaces. This extends the
applicability of our algorithm beyond studies such as [13], building upon the con-
cept of virtual spaces analyzed in [3]. Besides a theoretical framework for analyzing
the condition number of the preconditioned system, future work includes the use
of adaptive algorithms like the one analyzed in [6] for high-contrast multiscale co-
efficients, as well as a generalization to discontinuous virtual element spaces, where
tThu can include more general polygonal partitions of Ω.
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