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Abstract

Telecommunications is currently one of the most important technologies,
utilizing various infrastructure elements to enable communication over the
Internet. When an internet connection is established, traffic packets are
routed from one device to another, taking different paths through routers
that process each packet. These networks present multiple challenges in
processing, distributing and connecting traffic. To address these challenges
it is necessary, on the one hand, to have models that describe the behavior
of traffic and its evolution over time, such as the Generalized Markov Fluid
Model. On the other hand, it is essential to reserve part of the available
resource at each node for ongoing connections. To carry out this reservation
process, the Effective Bandwidth is employed. In this paper, we describe
the distribution of the buffer in equilibrium for traffic sources modeled by a
Generalized Markov Fluid Model, using a system of differential equations.
As the main result of this paper, we prove that it is possible for this model
to characterize the effective bandwidth when the most probable duration of
the buffer busy period prior to overflow becomes larger and larger. Finally,
we verify this result numerically from simulated traffic traces.

Keywords: effective bandwidth; Markov fluid; eigenvalues; Perron-Frobenius method;
differential equations.

Resumen

En la actualidad, una de las tecnoloǵıas más importantes son las telecomuni-
caciones, las cual despliega diversos elementos de infraestructura para permi-
tir la comunicación a través de internet. Cuando se establece una conexión
a internet, los paquetes de tráfico se dirigen de un dispositivo a otro, reco-
rriendo diversas rutas a través de routers que procesan cada paquete. Estas
redes presentan múltiples desaf́ıos a la hora de procesar, distribuir y conec-
tar el tráfico. Para abordar estos retos es necesario, por un lado, disponer
de modelos que describan el comportamiento del tráfico y su evolución en
el tiempo, como el Modelo de Flujo Markoviano Generalizado. Por otro
lado, reservar en cada nodo parte del recurso disponible para las conexiones
en proceso y para llevar a cabo este proceso de reserva se utiliza el Ancho
de Banda Efectivo. En este trabajo describimos, a partir de un sistema de
ecuaciones diferenciales, la distribución del buffer en equilibrio en fuentes de
tráfico modeladas por un Modelo de Flujo Markoviano Generalizado. Como
resultado principal de este trabajo, demostramos para este modelo, que es
posible caracterizar el ancho de banda efectivo cuando la duración más pro-
bable del periodo ocupado del buffer antes del desbordamiento se hace cada
vez mayor. Finalmente, verificamos numéricamente este resultado a partir
de trazas de tráfico simuladas.

Palabras clave: ancho de banda efectivo; flujo markoviano; autovalores; método de Perron-

Frobenius; ecuaciones diferenciales.
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1. Introduction

Statistical modeling of data networks plays a key role in understanding and op-
timizing network performance. By analyzing the statistical properties of traffic
or the behavior of specific network components, such as buffer size or link capac-
ity, we can gain insight into the system and make more informed decisions about
resource allocation and congestion control.

To improve network utilization by efficiently increasing its data transmission
capacity statistical multiplexing is used, which allows sources to share the avail-
able bandwidth dynamically, taking advantage of idle periods of some sources
to allow data transmission from others, thus making better use of available re-
sources. Statistical multiplexing in data networks allows us to better understand
network behavior, optimize resource allocation, and design effective congestion
control mechanisms, and by accurately capturing the statistical properties of net-
work traffic, network performance is improved.

The statistical multiplexing system consists of a buffer of capacity B that re-
ceives input from multiple sources that are statistically independent. This buffer
is served by a channel of constant capacity, denoted C. In these systems, it is pos-
sible to allocate a bandwidth to each source based on its characteristics, including
burst and service requirements. It is important to note that the bandwidth of a
source is independent of the traffic sent to the multiplexer by other sources, so the
complexity of its calculation depends only on the source and not on the dimensions
of the system.

A problem in multiplexing is the non-zero probability of multiple sources si-
multaneously dispatching at the maximum rate, leading to potential overflow. To
avoid data loss and guarantee the preservation of Quality of Service (QoS) for
both current and future sources, it is essential to implement admission control
mechanisms when accepting new connections.

Statistical tools that allow characterizing the network requirement and that
have emerged as powerful methods to determine the probability of packet loss,
arise from the concept of Effective Bandwidth (EB) introduced by Kelly in 1996,
[10]. The EB is a useful and realistic measure of channel occupancy, reserving for
each source a capacity higher than the average transmission rate, which would be
a very optimistic measure, but lower than the maximum transmission rate, which
would be a pessimistic measure.

Many authors have calculated the effective bandwidth for Markovian fluids
from different approaches, developing formulas involving the estimable parameters
of the model. Thus, Kelly [10], Courcoubetis and Siris [4], Cao et al. [3] consider
the general problem of the existence of an effective bandwidth of stationary and
ergodic sources, while Kesidis, Walrand and Chang [11] adopt a large deviations
approach to determine the effective bandwidth. From the latter approach, an
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explicit formula for the effective bandwidth has been found for the Generalized
Markov Fluid Model (GMFM) [2].

In this paper, the behavior of the effective bandwidth of a GMFM modulated
source is studied for limiting buffer occupancy time values before overflow. Mitra
[1] describes by a set of differential equations the equilibrium buffer distribution
for a source modulated by a Markov fluid. In particular, we prove that this result
holds for the GMFM. On the other hand, we show that the EB for this model
is equal to the maximum real eigenvalue of a matrix, derived from the source
parameters, the network resources and the service requirements, with dimension
equal to the number of source states.

The paper is organized as follows: In Section 2, we give some notations that
we use throughout the paper, define some notions of matrix theory, and state the
main results of Perron-Frobenius theory that we use to prove our main result.
Section 3 introduces the Generalized Markov Fluid Model. It is shown that the
equilibrium buffer distribution for a GMFM-modulated source is described by a
set of differential equations. Section 4 provides background material on effective
bandwidth. In particular, we focus on the study of a GMFM modulated source.
Section 5 shows, as a main result, that the EB of this type of source is characterized
with the Perron-Frobenius eigenvalue. Section 6 provides a numerical check of the
main result by using simulated traffic traces. The paper ends with some concluding
remarks in Section 7.

2. Preliminares

2.1. Notations

Let A be a matrix of size n × n. We denote by ai j the element at position (i, j)
of the matrix A, and by a(m)

i j the element at position (i, j) of the matrix Am. We
consider that A > 0 if every ai j ≥ 0 and at least one ai j > 0, for 1 ≤ i, j ≤ n. We
consider that A ≫ 0, if ai j > 0, ∀ 1 ≤ i, j ≤ n. AT indicates the transposed A. The
symbol ⟨·, ·⟩ denotes the inner product of vectors.

2.2. Definitions

Definition 1. Let A be a matrix of size n × n. A is said to be a nonnegative matrix
whenever each ai j ≥ 0, and this is denoted by writing A ≥ 0.

Definition 2. Let A be a matrix of size n × n. A is said to be a reducible matrix

when there exists a permutation matrix P such that PT AP =
[
X Y
0 Z

]
, where X and

Z are both square. Otherwise A is said to be an irreducible matrix.
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Definition 3. Let A be a matrix of size n × n. We denote σ(A) as the set of all
eigenvalues of A. We denote ρ(A), the Spectral Radius of A, the maximum of the
absolute values of the elements of σ(A).

Definition 4. A nonzero vector x is a left eigenvector of a matrix A with an eigen-
value λ of A if xT A = λxT . Likewise x is an right eigenvector with an eigenvalue λ
of A if Ax = λx. Furthermore, we will say that x is normalized if it is verified that
⟨x, x⟩ = 1. For further details see [8].

Definition 5. Let ϕd(λ) and ϕi(λ) be the right and left normalized eigenvectors
associated with the eigenvalue λ, respectively. The Spectral Projection Matrix is
defined as P(λ) := ϕd(λ)ϕT

i (λ).

2.3. Perron-Frobenius theory

The following result can be found in the literature in different ways, depending
on the required assumptions on the matrix. We give the particular case we are
interested in for an irreducible and non-negative matrix. More details on this
result can be found in [8].

Theorem 1. (Perron-Frobenius) Let A be an irreducible non-negative matrix of
size n × n. Then,

1. ρ(A) ∈ σ(A).

2. ρ(A) has algebraic multiplicity 1.

3. There is a unique eigenvector x ∈ Rn, x > 0 such that Ax = ρ(A)x and∑n
i=1 xi = 1.

4. There is a unique eigenvector y ∈ Rn, y > 0 such that yT A = ρ(A)yT and∑n
i=1 xiyi = 1.

The following results, consequences of the Perron-Frobenius Theorem, can be
found in more detail in [9] and [8], respectively.

Proposition 1. Let A ≥ 0 be an irreducible matrix of size n×n and P be the spectral
projection matrix with respect to ρ(A). Then,

1. P2 = P.

2. AP = PA = ρ(A)P.
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Proposition 2. If A > 0 and there exists x ≫ 0 such that Ax ≤ µx, then ρ(A) ≤ µ.

Finally, the spectral radius is related to a matrix norm by the following result,
introduced by Gelfand [6].

Theorem 2. (Gelfand formula) Let ∥·∥ be a matrix norm of a matrix A of size

n × n. Then ρ(A) = limk→∞

∥∥∥Ak
∥∥∥1/k
.

3. The model

Markov fluid models have been developed for a long time and have proven to be
especially valuable for accurately modeling various real data sources, such as voice
and video. It is a work arrival process in which the work arrival rate depends
on the state of the Markov chain. Its main property of “memorylessness” allows
to deduce that the statistics of transitions between one state and another can be
summarized through a matrix Q, called the Infinitesimal Generator of the chain.

In a real data, voice or video traffic, the large number of different values ob-
served for the rates is transferred, in this model, in the number of states as-
sumed by the modulating chain and consequently in the dimension of the matri-
ces involved in the model, making the modeling problem almost unmanageable.
This inconvenience has given rise to the so-called Generalized Markov Fluid Model
(GMFM) [2]. It is a model modulated by a continuous, homogeneous and irre-
ducible Markov chain in time, where the transfer rates are now random
variables whose ranges and probability distributions are determined by the states
of the modulating chain, which can be interpreted as a type of activity performed
by a user, such as chat, video call, etc. A sudden change in the transfer rate
can be identified as a change of state in the chain. Formally, we can define the
GMFM as follows.

Definition 6. Let Z be a continuous-time, homogeneous, irreducible Markov chain
with finite state space K = {1, 2, . . . , k}, invariant distribution π and infinitesimal
generator Q. Furthermore, let f1, . . . , fk, be k probability laws with disjoint and
known supports, such that when the chain Z reaches at instant s the state i,
the conditional random variable Ys|Zs = i is distributed according to the known
probability law fi, with mean µi for i = 1, . . . , k. We will call Generalized Markov
Fluid Model modulated by the chain Z to the process

Xt =

∫ t

0
Ysds. (3.1)

Such a process represents the accumulated work in the interval [0, t] received
from the source dispatching information at rate Ys, that remains constant through-
out the entire time interval in which the Markov chain stays in a given state. The
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process Y is observable and, since the supports Ii of the distributions fi are disjoint
and known, so the process Z is also observable.

Since this is a continuous-time work arrival process that is modulated by a
Markov chain, its main property is that the statistics of the trajectory after time
t depend only on the state occupied by the process at t, and not on the previous
history. This property allows us to deduce that the statistics of the transitions
between one state and another can be summarized through a matrix Q, the in-
finitesimal generator of the chain, whose entries qi j represent the average number
of transitions per unit of time between state i and state j, that is, the speed with
which the chain leaves state i to move to state j at instant t. The elements of
the main diagonal qii are related to the average time that the process remains in
state i. In particular, the quantity qi = −qii can be interpreted as the number of
transitions leaving state i per unit of time, or as the total speed at which state i
is left to move to any other state at instant t.

The probability of the chain with k states being in state i is πi, where the vector
π = (π1, . . . , πk) satisfies the balance equation

πQ = 0.

The transfer rates are random variables, whose ranges and probability dis-
tributions are determined by the states of the modulating chain, which can be
interpreted as a type of activity performed by a user, such as chat, video call,
etc. In each state i, the data transfer rate assumes values that depend on the
corresponding activity, following a certain probability distribution fi. Using this
information we define the diagonal matrix H of size k × k such that the non-zero
elements are the first moments of each distribution, i.e., hii = µi. We introduce
this matrix to facilitate the handle of these values in future operations.

3.1. Equilibrium buffer distribution

For a given buffer content X, we ask whether it is possible to model, for the GMFM,
the equilibrium buffer distribution. To do so, we start by studying the behavior
of the source for each state. The stationary state distribution of the multiplexing
system can be defined as π(x) = {πs(x) | s ∈ K}, with

πs(x) = P(Z = s, X ≤ x), s ∈ K , 0 ≤ x < ∞.

As an answer to our question arises the following theorem, in which we show
that, for a source modulated by the GMFM, it is possible to describe the equilib-
rium buffer distribution by means of a set of differential equations.

Theorem 3. The equilibrium buffer distribution for a source modulated by a GMFM,
defined as in (3.1), is described by the following system of differential equations:

d
dx
π(x)H = π(x)Q.
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Proof. Let πs(t, x) = P(Zt = s, X ≤ x) be the probability that at time t the modulate
chain is in state s, and accumulated work does not exceed x.

Between two different time instants, the chain can remain in the same state s or
change from state s′ to state s and the average number of such changes is denoted
by gs′ s. Analyzing all possible scenarios occurring within a small increment of time
∆t, for our model defined as in (3.1), we have that

πs(t + ∆t, x) =
∑
s′∈K

gs′ s∆t
∫

Is′

πs′ (t, x − y∆t) fs′ (y)dy

+

1 −∑
s′∈K

gs′ s∆t

 ∫
Is

πs (t, x − y∆t) fs(y)dy.

We thus have

πs(t + ∆t, x)
∆t

=
∑
s′,s

gs′ s

∫
Is′

πs′ (t, x − y∆t) fs′ (y)dy

−
∑
s′,s

gs′ s

∫
Is

πs (t, x − y∆t) fs(y)dy +
∫

Is

πs (t, x − y∆t) fs(y)dy
∆t

.

Passing to the limit ∆t → 0, the last equation can be written as follows:

∂πs(t, x)
∂t

=
∑
s′,s

gs′ sπs′ (t, x) −
∑
s′,s

gs′ sπs(t, x) − µs
∂πs(t, x)
∂x

.

We are interested only in time-independent, equilibrium probabilities. Therefore,
we set ∂πs(t,x)

∂t = 0 and obtain

µs
∂πs(t, x)
∂x

=
∑
s′,s

gs′ sπs′ (t, x) −
∑
s′,s

gs′ sπs(t, x). (3.2)

Finally, recalling the definition of the matrix H, we can write (3.2) in matrix
notation as follows:

d
dx
π(x)H = π(x)Q.

□

Let the stationary buffer overflow distribution be given by P(X > x) = 1 −
⟨π(x), 1⟩, where π(x) is the solution of the linear system in Theorem 3.

Knowing how much of the available resources each connection needs, has direct
application to Connection Admission Control, minimizing the probability of buffer
overflow. It will then be necessary to have some measure of the occupation of the
transmission channel involving the parameters used to model the traffic and which
are also involved in the buffer equilibrium distribution. In the following section,
this measure of occupation is introduced.
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4. Effective bandwidth

Multiplexing variable-speed sources on a link requires that each source be assigned
a link capacity. This amount must be greater than the average transfer rate,
because that would be a very optimistic estimate, but less than the maximum
transfer rate to avoid unnecessary waste of resources. In order to achieve this
balance, the concept of Effective Bandwidth (EB), introduced by F. Kelly in 1996
[10], provides a valuable and realistic measure of channel occupancy.

The EB is closely related to the theory of large deviations and depends on
the statistical characteristics of the traffic, as well as the link capacity C, the
buffer size B, and the interaction with other traffic sources sharing the buffer.
Applications of this measurement to telecommunication networks are presented in
[7, 13], among others.

It is useful to have an explicit formula for EB, which depends on the model
parameters and can be estimated from the traffic traces. For the GMFM, the EB
can be expressed in the following way:

Theorem 4. Let {Xt}t≥0 be a GMFM modulated by a homogeneous irreducible Markov
chain Z with invariant distribution π and infinitesimal generator Q. And let the
diagonal matrix H be defined as before, then the EB for a GMFM is

α(s, t) =
1
st

log
{
π exp [(Q + sH) t]1

}
, (4.1)

where 1 is a column vector with all of its entries equal to 1.

Its proof is developed in [2].

As we can see, (4.1) depends on the parameters s and t which are unknown,
unrelated, and depend on the charasteristics of the multiplexed traffic and the link
resources, capacity, and buffer. Specifically, the time parameter t, measured in
sec., corresponds to the most probable duration of the buffer busy period prior to
overflow. The space parameter s, measured in Mb−1, corresponds to the degree
of multiplexing and depends, among others, on the size of the peak rate of the
multiplexed sources relative to the link capacity. In particular, for links with
capacity much larger than the peak rate of the multiplexed sources, s tends to zero
and α(s, t) approches the mean rate of the sources, while for links with capacity
not much larger than the peak rate of the sources, s is large and α(s, t) approches
the maximum value of X̄t

t , where X̄t := inf{x : P(Xt > x) = 0}, i.e., the least upper
bound on the value that Xt takes with positive probability.

5. Main result: Effective bandwidth characterization by
Perron-Frobenius eigenvalue

We are interested in being able to find an expression of the EB when the most likely
duration time of the buffer busy period prior to overflow becomes larger and larger.
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In this case, the following Theorem shows that the EB of a GFGM modulated
source is the maximum real eigenvalue of a matrix, derived from the source pa-
rameters, the network resources, and the service requirements, with dimension
equal to the number of source states.

Theorem 5. Let {Xt}t≥0 be a GMFM modulated by a homogeneous irreducible Markov
chain Z with invariant distribution π, infinitesimal generator Q and diagonal ma-
trix H defined as before. Then

lim
t→∞
α(s, t) =

1
s
ρ(Q + sH). (5.1)

To prove Theorem 5, we need the following lemma:

Lemma 1. Let {Xt}t≥0 be a GMFM modulated by a homogeneous irreducible Markov
chain Z with invariant distribution π, infinitesimal generator Q and diagonal ma-
trix H defined as before. Then

lim
t→∞
{π exp[(Q + sH)t]1}1/t = ρ(exp(Q + sH)).

Proof. Let s be arbitrary. First, let us show that

ρ(exp(Q + sH)) ≥ lim
t→∞
{π exp[(Q + sH)t]1}1/t.

Let us denote A(s) := exp(Q + sH). Since the matrix A(s) is nonnegative and
irreducible, because of the irreducibility of Q, we can then apply Theorem 1.
Let ϕd(s) and ϕi(s) be the right and left normalized eigenvectors, respectively,
associated with the Perron-Frobenius eigenvalue gp(s) := ρ(A(s)) of the matrix
A(s). Then

A(s)ϕd(s) = gp(s)ϕd(s),

ϕT
i (s)A(s) = gp(s)ϕT

i (s).
(5.2)

Let P(s) be the spectral projection matrix with respect to gp(s), then,

P(s) = ϕd(s)ϕT
i (s). (5.3)

Let gB(s) be an eigenvalue of the matrix B(s) := A(s) − gp(s)P(s). Let us prove
that |gB(s)| ≤ gp(s). Suppose, for some x(s) , 0, that

B(s)x(s) = gB(s)x(s). (5.4)
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By Proposition 1 applied to P(s), (5.2), (5.3), and (5.4), we have that

gB(s)P(s)x(s) = P(s)B(s)x(s)
= P(s)[A(s) − gp(s)P(s)]x(s)

= [ϕd(s)ϕT
i (s)A(s) − gp(s)P(s)]x(s)

= [ϕd(s)gp(s)ϕT
i (s) − gp(s)P(s)]x(s)

= [gp(s)P(s) − gp(s)P(s)]x(s)
= 0,

(5.5)

so gB(s)x(s) ∈ Ker P(s).

If gB(s) = 0 then |gB(s)| ≤ gp(s), else, by (5.5) it follows that x(s) ∈ Ker P(s),
then

gB(s)x(s) = B(s)x(s)
= A(s)x(s) − gp(s)P(s)x(s)
= A(s)x(s),

so that gB(s) is an eigenvalue of A(s) and by Theorem 1,

|gB(s)| ≤ gp(s). (5.6)

Using Gelfand’s formula for the L1-norm, Proposition 2, (5.4), and (5.6), it
follows that, for all m,

ρ(B(s)) = lim
m→∞

max
1≤ j≤k

k∑
i=1

∣∣∣∣b(m)
i j

∣∣∣∣
1/m

≤ gp(s).

This means that∣∣∣∣b(m)
i j

∣∣∣∣ ≤ k∑
i=1

∣∣∣∣b(m)
i j

∣∣∣∣⇒ max
i, j

∣∣∣∣b(m)
i j

∣∣∣∣ ≤ max
j

k∑
i=1

∣∣∣∣b(m)
i j

∣∣∣∣ , ∀1 ≤ i, j ≤ k,

then

lim
m→∞

(
max

i, j

∣∣∣∣b(m)
i j

∣∣∣∣)1/m

≤ ρ(B(s)) ≤ gp(s).

Therefore, there exists k1 ∈ N such that
(
maxi, j

∣∣∣∣b(m)
i j

∣∣∣∣)1/m
≤ gp(s), ∀ m ≥ k1, which

means that

max
i, j

∣∣∣∣b(m)
i j

∣∣∣∣ ≤ gp(s)m, ∀ m ≥ k1. (5.7)

By induction on m, it can be proved that B(s)m = A(s)m − gp(s)mP(s). Then

πB(s)t1 = π[A(s)t − gp(s)tP(s)]1 = πA(s)t1 − gp(s)tπP(s)1. (5.8)
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Noting that, πϕd(s) ≤ 1Tϕd(s) = 1, by (5.3) we have

gp(s)tπP(s)1 = gp(s)tπϕd(s)ϕT
i (s)1 ≤ gp(s)tϕT

i (s)1. (5.9)

For sufficiently large t, applying (5.7) we have that

πB(s)t ≤ max
i, j

∣∣∣∣b(t)
i j

∣∣∣∣ 1T ≤ gp(s)t1T ,

therefore,
πB(s)t1 ≤ gp(s)tk. (5.10)

From (5.8), (5.9), and (5.10), for sufficiently large t we thus obtain

gp(s)t[k + ϕT
i (s)1] = gp(s)tk + gp(s)tϕT

i (s)1 ≥ πA(s)t1. (5.11)

Since ϕi(s) ≥ 0, we have that 0 < k + ϕT
i (s)1 < ∞, so we conclude from (5.11)

lim
t→∞

{
πA(s)t1

}1/t
≤ lim

t→∞
gp(s)[k + ϕT

i (s)1)]1/t = gp(s),

and consequently

ρ(exp(Q + sH)) ≥ lim
t→∞
{π exp[(Q + sH)t]1}1/t. (5.12)

Next, we will show that ρ(exp(Q + sH)) ≤ limt→∞{π exp[(Q + sH)t]1}1/t.

We assume that A(s)1 ≪ gp(s)1, that is, gp(s) >
∑k

j=1 ai j, ∀ i = 1, . . . , k. Then,
there exists g(s) such that

A(s)1 ≤ g(s)1 (5.13)

gp(s) > g(s). (5.14)

Applying (5.13) and Proposition 2, we have that gp(s) ≤ g(s), which
contradicts (5.14). Then

A(s)1 ≥ gp(s)1.

Since A(s) > 0 for s > 0, it can be shown by induction on m that A(s)m1 ≥
gp(s)m1, particularly,

πA(s)t1 ≥ πgp(s)t1 = gp(s)t,

concluding that

lim
t→∞
{πA(s)t1}1/t ≥ lim

t→∞
[gp(s)t]1/t = gp(s) = ρ(exp(Q + sH)). (5.15)

The result follows from (5.12) and (5.15). □
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We now prove Theorem 5.

Proof of Theorem 5. From Lemma 1 we have that

log ρ(exp(Q + sH)) = log lim
t→∞
{π exp[(Q + sH)t]1}1/t

= lim
t→∞

1
t

log{π exp[(Q + sH)t]1}.
(5.16)

Since Q + sH is non-negative and irreducible, we have that ρ(exp(Q + sH)) =
exp(ρ(Q + sH)). Then we can rewrite (5.16) as:

ρ(Q + sH) = log exp(ρ(Q + sH)) = lim
t→∞

1
t

log{π exp[(Q + sH)t]1}.

Finally, by a convenient operation, we have (5.1), so the theorem is proved.
□

We thus demonstrate that it is possible to characterize the EB of a
GMFM modulated source by the maximum real eigenvalue of a matrix that
depends on the source parameters, network resources and service requirements,
when the most likely duration time of the buffer busy period prior to overflow
becomes larger and larger.

6. Numerical results

In this section we present some numerical results to evaluate the EB for values
of the parameter t of increasing time, in order to verify that in the limit this
value coincides with the maximum real eigenvalue of the matrix Q + sH, as we
proved in Theorem 5.

Traffic simulations, generated by Markov Chain Monte Carlo algorithms, were
performed according to the model presented in Section 3. This algorithm has the
ability to efficiently explore the parameter space of complex models. Moreover,
given the ergodicity of the modulant chain, generating a single trace, the method
guarantees convergence to the target distribution, and provides accurate and rep-
resentative estimates, when the generated chain is long enough. The modulant
Markov chain has 9 states, each one associated to a data transfer rate interval, as
shown in Table 1.
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Table 1: Theoretical dispatch rates.

State Transfer rate (Mbps)
1 (0, 1024]
2 (1024, 2048]
3 (2048, 3072]
4 (3072, 4096]
5 (4096, 5120]
6 (5120, 6144]
7 (6144, 7168]
8 (7168, 8192]
9 (8192, 10240]

To design the infinitesimal generator Q of the chain, we consider that it can
pass from one state to another with the same probability, so we take

Q =



−8 1 1 1 1 1 1 1 1
1 −8 1 1 1 1 1 1 1
1 1 −8 1 1 1 1 1 1
1 1 1 −8 1 1 1 1 1
1 1 1 1 −8 1 1 1 1
1 1 1 1 1 −8 1 1 1
1 1 1 1 1 1 −8 1 1
1 1 1 1 1 1 1 −8 1
1 1 1 1 1 1 1 1 −8


.

The GMFM can be interpreted as a way to reduce the Markov fluid model
when its dimension is very large, grouping similar dispatch rates as a noise around
a central value, so it is appropriate to model them by a Gaussian distribution. Then
within each interval, we assume that the quantity actually dispatched is drawn by
a Gaussian distribution with mean equal to the midpoint and variance equal to
one-sixth of its length. The diagonal matrix H contains in its main diagonal the
mean values of these distributions.

The simulated trace is a succession of pairs (vi, ti), where vi is the transfer rate,
ti is the time when the chain jumps to another state, so the link is transferred at
rate vi while ti−1 < t < ti, for i = 1, . . . , 14000, the number of jumps of the chain.
To estimate the infinitesimal generator Q = (qi j)i, j=1,...,k we use the estimation of its
elements using the Lebedev-Lukashuk maximum likelihood estimator [12], which
allows us to obtain an asymptotic Gaussian estimate of the elements of Q as a
function of the traffic trajectories or traces. They are q(n)

i j (x) = γ(i, j,nx)
τ(i,nx) , where q(n)

i j
represents the estimated element of the (i, j) position of the Q matrix, γ(i, j, h) is
the number of transitions of the string from i to j in the interval [0, h] and τ(i, h)
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is the time the string remained in the i state during the interval [0, h]. More
information about this maximum likelihood estimator can be found at [2].

Simulations were performed in Python 3.7 using sklearn.neighborslibrary and
codes can be provided by asking the authors.

From simulated trace data, we estimated the EB using the Kernel Density Esti-
mator (KDE), the Gaussian Mixture Model (GMM) and the Affinity Propagation
(AP) method. In [5] we compared the results obtained by calculating partition
comparison indices, concluding that the most accurate methods are the Gaussian
Mixture Model followed by the Kernel Density Estimator method.

From the results obtained from these estimations, we study the behavior of EB
for increasingly larger t values in order to verify numerically the result obtained by
the Theorem 5. Without loss of generality we consider s = 1. Figure 1a shows the
behavior of the theoretical (Theor) and estimated EB by the different methods for
sufficiently large t values. The dotted horizontal lines indicate the values of the
eigenvalues of Perron-Frobenius for both the theoretical EB and the one estimated
by the different methods.

(a) Convergence to Perron-Frobenius eigen-
value.

(b) Zoom Figure 1a.

Figure 1: Approximation of the theoretical and estimated Effective Bandwith to the
Perron-Frobenius eigenvalue.

7. Conclusions

In this paper we have shown that it is possible to describe the equilibrium buffer
distribution for a GMFM modulated source by means of a set of differential equa-
tions. Furthermore, we have shown, as a main result, that for this type of sources
it is possible to characterize the EB through the maximum eigenvalue of a ma-
trix that depends on the source parameters, the network resources and the service
requirements. In this way we obtained a simple expression of the asymptotic be-
havior of the buffer content, which is extremely useful for network design when
sources are bursty, and numerically easy to calculate. This novel result is a conse-
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quence of the application of the Perron-Fronenius theory to non-negative matrices,
whose components are not deterministic but depend on the moments of the dis-
tributions involved in the model. Finally we have numerically verified this main
result for simulated traffic traces.
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