Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Minimization of the first eigenvalue in problems involving the bi-laplacian
PDF

Palabras clave

bi-Laplacian
first eigenvalue
minimization
bi-Laplaciano
primer autovalor
minimización

Cómo citar

Anedda, C., Cuccu, F., & Porru, G. (2009). Minimization of the first eigenvalue in problems involving the bi-laplacian. Revista De Matemática: Teoría Y Aplicaciones, 16(1), 127–136. https://doi.org/10.15517/rmta.v16i1.1422

Resumen

Este artículo trata de la minimización del primer autovalor en problemas relativos al bi-Laplaciano bajo condiciones de frontera homogéneas de tipo Navier o Dirichlet. Físicamente, en el problema bi-dimensional, nuestra ecuacin modela la vibración de una placa inhomogénea Ω fija con goznes a lo largo de su borde. Dados varios materiales (de diferentes densidades) y extensión total |Ω|, investigamos cuál debe ser la localización de tales materiales en la placa para minimizar el primer modo de su vibración

https://doi.org/10.15517/rmta.v16i1.1422
PDF

Citas

Agmon, S.; Douglis, A.; Nirenberg, L. (1959) “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I,” Commun. Pure Appl. Math., 12: 623–727.

Anedda, C. (2008) “Maximization and minimization in problems involving the bi-Laplacian”, Preprint N. 1, Maths Department, Univ. Cagliari, Italy: 1–12.

Brothers, J.E.; Ziemer, W.P. (1988) “Minimal rearrangements of Sobolev functions”, J. Reine Angew. Math., 384: 153–179.

Burton, G.R. (1989) “Variational problems on classes of rearrangements and multiple configurations for steady vortices”, Ann. Inst. Henri Poincaré, 6(4): 295–319.

Burton, G.R.; McLeod, J.B. (1991) “Maximisation and minimisation on classes of rearrangements”, Proc. Roy. Soc. Edinburgh Sect. A, 119(3-4): 287–300.

Chanillo, S.; Grieser, D.; Imai, M.; Kurata, K.; Ohnishi, I. (2000) “Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes”, Commun. Math. Phys., 214: 315–337.

Cox, S.J.; McLaughlin, J.R. (1990) “Extremal eigenvalue problems for composite membranes, I, II”, Appl. Math. Optim., 22: 153–167; 169–187.

Cuccu, F.; Emamizadeh, B.; Porru, G. (s.f.) “Optimization of the first eigenvalue in problems involving the p-Laplacian”, Proc. Amer. Math. Soc. To appear.

Cuccu, F.; Porru, G. (2003) “Optimization in eigenvalue problems”, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10: 51–58.

Evans, L.; Gariepy, R.F. (1992) Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton.

Gilbarg, D.; Trudinger, N.S. (1977) Elliptic Partial Differential Equations of Second Order. Springer Verlag, Berlin.

Grunau, H.C.; Sweers, G. (1999) “Sign change for the Green function and for the first eigenfunction of equations of clamped-plate type”, Arch. Ration. Mech. Anal. 150: 179–190.

Kawohl, B. (1985) Rearrangements and Convexity of Level Sets in PDE. Lectures Notes in Mathematics, 1150, Berlin.

Struwe, M. (1990) Variational Methods. Springer-Verlag, Berlin, New York.

Talenti, G. (1976) “Elliptic equations and rearrangements”, Ann. Sc. Norm. Sup. Pisa, Ser. IV, 3: 697–718.

##plugins.facebook.comentarios##

Descargas

Los datos de descargas todavía no están disponibles.