Resumen
Estudiamos los rudimentos básicos sobre G-estructuras de orden superior, y luego probamos que el conjunto de automorfismos infinitesimales de una G-estructura geométrica sobre una variedad M es un grupo de Lie.
Citas
Candel, A.; Quiroga-Barranco, R. (2004) “Rigid and finite type geometric structures”, Geometriae Dedicata 106: 123–143.
D’Ambra, G.; Gromov, M. (1991) “Lectures in transformation groups: geometry and dynamics”, Surveys in Differential Geometry 1: 19–111.
Duistermaat, J.J.; Kolk, J.A.C (2000) Lie Groups. Universitext, Springer- Verlag, Berlin.
Feres, R. (1998) Dynamical Systems and Semisimple Groups. An Introduction. Tracts in Mathematics 126, Cambridge University Press, New York.
Gromov, M. (1988) Rigid transformations groups, in: D. Bernard & Y. Choquet-Bruhat (Eds.) Géométrie Différentielle, Travaux en Cours, Hermann, Paris: 65–139.
Kobayashi, S.; Nomizu, K. (1980) Foundations of Differential Geometry, Vol. 1, John Wiley & Sons, New York.
Kolář, I.; Michor, P.W.; Slovák, J. (1993) Natural Operations in Differential Geometry, Springer-Verlag, Berlin.
Rosales, J. (2005) The Gromov’s Centralizer Theorem for Semisimple Lie group Actions. Ph.D Thesis, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, México.
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Derechos de autor 2014 José Rosales-Ortega