Resumen
Este artículo presenta una arquitectura Tabú/Búsqueda Dispersa multiobjetivo, con información de preferencia basada en punto de referencia para problemas de naturaleza continua. Los rasgos de esta nueva versión son los siguientes: funcionamiento interactivo, aproximación determinística a las soluciones Pareto cercanas al punto de referencia y la posibilidad de cambiar el punto de referencia para explorar deferentes regiones de preferencia. El enfoque no impone restricciones con relación a los puntos de referencia en el espacio de los objetivos, y muestra su habilidad en la solución de problemas desde 2 hasta más de 10 objetivos, hallando conjuntos de soluciones eficientes cercanas al punto de preferencia.
Citas
Bandyopadhyay, S.; Saha, S.; Maulik, U.; Deb, K. (2008) “A simulated annealing-based multiobjective optimization algorithm: AMOSA”, IEEE Transactions on Evolutionary Computation 12(3): 269–283.
Barbosa H.J.; Barreto A.M. (2001) “An interactive genetic algorithm with co-evolution of weights for multiobjective problems”, in: L. Spector, E.D. Goodman, A. Wu, W. Langdom, H.M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M.H. Garzon & E. Burke, (Eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2001), Morgan Kaufmann Publishers, San Francisco CA: 203–210
Beausoleil, R.P. (2006) “MOSS multiobjective scatter search applied to non-linear multiple criteria optimization”, European Journal of Operational Research 169(2): 426–449.
Beausoleil, R.P. (2008) “MOSS-II tabu/scatter search for nonlinear multi-objective optimization”, in: P. Siarry & Z. Michalewicz (Eds.) Advances in Metaheuristics for Hard Optimization, Natural Computing Series, Springer: 39–67.
Branke, J.; Kauler, T.; Schmeck, H. (2001) “Guidance in evolutionary multi-objective optimization”, Advances in Engineering Software 32: 499–
Cvetkovic, D.; Parmee, I. (1998) “Evolutionary design and multiobjective optimization”, Proceedings of the Sixth European Congress on Intelligent Techniques and Soft Computing (EUFIT), Aachen, Germany: 397–401.
Deb, K. (1999) “Solving goal programming problems using multi-objective genetic algorithms”, Proceedings of Congress on Evolutionary Computation: 77–84.
Deb, K. (2001) Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester UK.
Deb, K.; Pratap, A.; Mayaravian, T.; (2001) “Constrained test problems for multi-objective evolutionary optimization”, in: E. Zitzler, K. Deb, L. Thiele, C. Coello & D. Corne (Eds.) First International Conference On Evolutionary Multi-criterion Optimization, Lecture Notes in Computer Science 1993, Springer-Verlag, London: 284–298.
Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. (2002) “Scalable multi- objective optimization test problems”, in: Proceedings of the Congress on Evolutionary Computation (CEC-2002) Honolulu HW, Vol. 1. IEEE Service Center, Piscataway, NJ: 825–830.
Deb, K.; Sundar, J.; Bhaskara Rao, N.U.; Chaudhuri, S. (2006) “Reference point based multi-objective optimization using evolutionary algorithms”, International Journal of Computational Intelligence Research 2(3): 273–286.
Fonseca, C.M.; Fleming, P.J. (1993) “Genetic algorithm for multiobjective optimization: formulation, discussion and generalization”, in: S. Forrest (Ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufman, San Mateo CA: 416–423.
Li, H.; Zhang, Q. (2009) “Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II ”, IEEE Transactions on Evolutionary Computation 13(2): 284–302.
Miettinen, D.K.; Lotov, A.V.; Kamenev, G.K.; Berezkin, V.E. (2003) “Integration of two multiobjective optimization methods for nonlinear problems”, Optimization Methods and Software 18(1): 63–80.
Molina, J.; Santana, L.V.; Hernández-Díaz, A.G.; Coello Coello, C.A.; Caballero, R. (2009) “g-dominance:reference point based dominance for multiobjective metaheuristics”, European Journal of Operational Research 197(2): 685–692.
Shukla, P.K.; Deb, K.; Tiwari, S. (2005) “Comparing classical generating methods with an evolutionary multi-objective optimization method”, Lecture Notes in Computer Science 3410, Springer-Verlag: 311–325
Thiele, L.; Miettinen, K.; Korhonen, P.; Molina, J. (2007) “A preference-based evolutionary algorithm for multiobjective optimization”, Evolutionary Computation 19(3): 411–436.
Wierzbicki, A.P. (1982) “A mathematical basis for satisficing decision making”, Mathematical Modelling 3(5): 391–405.
Wierzbicki, A.P. (1980) “The use of reference objectives in multiobjective optimization”, in: G. Fandel & T. Gal (Eds.) Multiple Criteria Decision Making. Theory and Application , Springer-Verlag, Berlin: 469–486.
Van Veldhuizen, D.A.; Lamont, G.B. (1998) “Evolutionary computation and convergence to a Pareto front”, in: J.R. Koza (Ed.) Late Breaking Papers at the Genetic Programming Conferece Stanford University, Stanford CA: 221–228.
Zitzler, E.; Thiele, L.; Bader, J. (2008) “SPAM: Set preference algorithm optimization”, in: G. Rudolph et al. (Eds.) Parallel Problem Solving from Nature (PPSN X), Dortmund, Lecture Notes in Computer Science 5199, Springer-Verlag: 847–858.
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Derechos de autor 2014 Ricardo P. Beausoleil