Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
L3: the geometry of pseudoquaternions
PDF

Palabras clave

pseudoquaternions
vector analysis
null curves
pseudocuaterniones
análisis vectorial
curvas nulas

Cómo citar

Birman, G. S. (1998). L3: the geometry of pseudoquaternions. Revista De Matemática: Teoría Y Aplicaciones, 5(2), 187–192. https://doi.org/10.15517/rmta.v5i2.164

Resumen

Introducimos los pseudocuaterniones como una herramienta efectiva para describir el análisis vectorial de L3, y los usamos para caracterizar curvas nulas y cúbicas nulas en S21.


https://doi.org/10.15517/rmta.v5i2.164
PDF

Citas

Birman, G.; Nomizu, K. (1984) “Trigonometry Lorentzian geometry”, Amer. Math.Monthly, 91(9).

Bonnor, W.B. (1969) “Null curves in a Minkowski space time”, Tensor N.S. 20: 229–242.

Graves, L.K. (1979) “Codimension one isomtric immersions between Lorentz spaces”, Transactions of the Amer. Math. Society, 252: 367–392.

Santaló, L.A. (1974) “Curvas y cuaterniones”, Revista de la Unión Matemática Argentina 27(1): 41–52.

Yaglom, I.M. (1968) Complex numbers in geometry. Academic Press, New York.

Comentarios

Descargas

Los datos de descargas todavía no están disponibles.