Resumen
Se da una breve introducción a problemas de metas en teoría abstracta del jugador, así como el enunciado de algunos de los principales teoremas y un número de ejemplos, problemas abiertos y referencias. Se hace énfasis en el caso de estado finito, contable aditivo, con objetivos clásicos como alcanzar una meta, alcanzar uan meta infinitamente abierta, permanecer en una meta. y maximizar el tiempo promedio premanecido en una meta.
Citas
[B1] Blackwell, D.(1965) “Discounted dynamics programming”, Ann. Math. Statist.36: 226–235.
[Br] Brieman, L. (1961) “Optimal gambling systems for favorable games”, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability1, Univ. Calif. Press: 65–78.
[DH1] Demko, S.; Hill, T. (1981) “Decision processes with total-cost criteria”, Ann. Probab. 9: 293–301.
[DH2] Demko, S.; Hill, T. (1984) “On maximizing the average time at a goal”, Stoch. Processes and Their Applic. 17: 349–357.
[DSa] Dubins, L.; Savage, L. (1976) Inequalities for Stochastics Processes: How to Gamble if You Must. Dover, New York.
[DSu] Dubins, L.; Sudderth, W. (1977) “Persistenly Є-optimal strategies”, Math. Operations Research 2125–135.
[F] Feller, W. (1968) An Introduction to Probability Theory and Its Applications, Vol. I, 3rd edition. Wiley, New York.
[Hi] Hill, T. (1979) “On the existence of good Markov strategies”, Trans. Amer. Math. Soc. 247: 157–176.
[HP] Hill, T.; Pestien, V. (1987) “The existence of good Markov strategies for decision processes with general payoffs”, Stoch. Processes and Their Applic. 24: 61–76.
[HvW] Hill, T.; van der Wal, J. (1987) “Monotonically improving limit-optimal strategies in finite-state decision processes”, Math. Operations Research12: 463–473.
[Ho] Howard, R. (1960)Dynamics Programming and Markov Process. Technology Press, Cam-bridge, MA.
[MS1] Maitra, A.; Sudderth, W. (1995) “An introduction to gambling theory and its applications to stochastic games”, preprint.
[MS2] Maitra, A.; Sudderth, W. (to appear) Discrete Gambling and Stochastic Games.
[O] Ornstein, D. (1969) “On the existence of stationary optimal strategies”, Proc. Amer. Math. Soc. 20: 563–569.
[St] Strauch, R. (1967) “Measurable gambling houses”, Trans. Amer. Math. Soc. 126: 64–72.
[Su] Sudderth, W. (1969) “On the existence of good stationary strategies”, Trans. Amer, Math. Soc. 135: 399–415.