Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Local convergence of exact and inexact Newton's methods for subanalytic
PDF (English)

Palabras clave

set–valued mapping
variational inclusion
semistability
hemistability
subanalytic function
Newton’s method
inexact Newton’s method set–valued mapping
variational inclusion
semistability
hemi- stability
subanalytic function
Newton’s method
inexact Newton’s method

Cómo citar

Cabuzel, C., Pietrus, A., & Burnet, S. (2015). Local convergence of exact and inexact Newton’s methods for subanalytic. Revista De Matemática: Teoría Y Aplicaciones, 22(1), 31–47. https://doi.org/10.15517/rmta.v22i1.17519

Resumen

En este artículo se estudia un método iterativo para resolver una inclusión variacional de la forma 0 ∈ f(x) + F(x), donde f es una función punto-conjunto, subanalítica, localmente Lipschitz y F es una función multivaluada de Rn en los subconjuntos cerrados de Rn. A esta inclusión se le asocia, en primer lugar, una sucesión tipo Newton y, posteriormente una sucesión tipo Newton inexacto. Bajo algunas propiedades de semi-estabilidad y hemi-estabilidad de la solución x de la inclusión variacional, se demuestra la existencia de una sucesión que es superlinealmente localmente convergente.

https://doi.org/10.15517/rmta.v22i1.17519
PDF (English)

Citas

Aubin, J.-P.; Frankowska, H. (1990) Set Valued–Analysis. Birkhäuser, Boston.

Aubin, J.-P. (1984) “Lipschitz behaviour of solutions to convex minimization problems”, Math. Oper. Res. 9(1): 87–111.

Bierstone, E.; Milman, P.D. (1988) “Semianalytic and subanalytic sets”, IHES Publications Mathématiques 67(1): 5–42.

Bochnak, J.; Coste, M.; Roy, M.-F. (1988)Géométrie Algébrique Réelle. Springer, Berlin.

Bolte, J.; Daniilidis, A.; Lewis, A.S. (2009)“Tame mapping are semis-mooth”, Math. Program. 117(1-2): 5–19.

Bonnans, J.-F. (1994) “Local Analysis of Newton-Type Methods for Variational Inequalities and Nonlinear Programming”, Appl. Math. Optim. 29(2): 161–186.

Burnet, S.; Jean-Alexis, C.; Piétrus, A. (2012)“A multipoint iterative method for semistable solutions”, Appl. Math. E-notes 12: 44–52.

Burnet, S.; Jean-Alexis, C.; Piétrus, A. (2011) “An iterative method for semistable solutions”, RACSAM 105(1): 133–138.

Burnet, S.; Piétrus, A. (2011) “Local analysis of a cubically convergent method for variational inclusions”, Appl. Mat. 38(2): 183–191.

Cabuzel, C.; Piétrus, A. (2008) “Local convergence of Newton’s method for subanalytic variational inclusions”, Positivity 12(3): 523–533.

Cabuzel, C.; Piétrus, A. (2009) “Solving variational inclusions by a method obtained using a multipoint formula”, Rev. Mat. Complut. 22(1): 63–74.

Clarke, F.H. (1990) Optimization and Nonsmooth Analysis. Society for Industrial and Applied Mathematics, Philadelphia PA.

Dedieu, J.-P. (1992) “Penalty functions in subanalytic optimization”, Optimization 26(1-2): 27–32.

Dontchev, A.L.; Hager, W.W. (1994) “An inverse function theorem for set–valued maps”, Proc. Amer. Math. Soc. 121: 481–489.

Dontchev, A.L. (1996) “Local convergence of the Newton method for generalized equation”, C.R.A.S. 322(1): 327–331.

Dontchev, A.L. (1996) “Uniform convergence of the Newton method for Aubin continuous maps”, Serdica Math. J. 22(1): 385–398.

Dontchev, A.L. (1996) “Local Analysis of a Newton-type method based on partial linearization”, in: J. Renegar et al. (Eds.) The Mathematics of Numerical Analysis. 1995 AMS-SIAM Summer Seminar in Applied Mathematics, Providence RI: AMS., Lect. Appl. Math. 32: 295–306.

Dontchev, A.L.; Quincampoix, M.; Zlateva, N. (2006) “Aubin criterion for metric regularity”, J. of Convex Analysis 13(2): 281–297.

Dontchev, A.L.; Rockafellar, R.T. (2009) Implicit Functions and Solution Mappings. Springer Monographs in Mathematics.

Ferris, M.C.; Pang, J.S. (1997) “Engineering and economic applications of complementary problems”, SIAM Rev. 39(4): 669–713.

Gabrielov, A.M. (1968) “Projection of semianalytic sets”, Funkcional. Anal. Prilozen. 2(4): 18–30.

Geoffroy, M.H.; Hilout, S.; Pietrus, A. (2003) “Acceleration of convergence in Dontchev’s iterative method for solving variational inclusions”, Serdica Math. J. 29(1): 45–54.

Geoffroy, M.H.; Pietrus, A. (2003) ”A superquadratic method for solving generalized equations in the Hölder case”, Ricerche Mat. 52(2): 231–240.

Geoffroy, M.H.; Hilout, S.; Pietrus, A. (2006) “Stability of a cubically convergent method for generalized equations”, Set-Valued Anal. 14(1): 41–54.

Hironaka, N. (1973) “Subanalytic sets”, Number Theory, Algebraic Geometry and Commutative Algebra, in honour of Y. Akizuki Kinokuniya, Tokyo: 453–493.

Izmailov, A.F.; Solodov, M.V. (2010) “Inexact Josephy-Newton framework for generalized equations and its applications to local analysis of Newtonian methods for constrained optimization”, Comput. Optim. Appl. 46: 347–368.

Jean-Alexis, C. (2006) “A cubic method without second order derivative for solving variational inclusions”, C. R. Acad. Bulgare Sci. 59(12): 1213–1218.

Lojasiewicz, S. (1964) Ensembles Semi-Analytiques. IHES, Mimeographed notes.

Mordukhovich, B.S. (1993) “Complete characterization of openness metric regularity and lipschitzian properties of multifunctions”, Trans. Amer. Math. Soc. 340: 1–36.

Mordukhovich, B.S. (2006) Variational Analysis and Generalized Differentiation. I: Basic Theory. Vol. 330, Springer.

Piétrus, A. (2000) ”Generalized equations under mild differentiability conditions”, Rev. Real. Acad. Ciencias de Madrid 94(1): 15–18.

Piétrus, A. (2000) “Does Newton’s method for set–valued maps converges uniformly in mild differentiability context?”, Rev. Colombiana. Mat. 32: 49–56.

Qi, L.; Sun, J. (1993) “A nonsmooth version of Newton’s method”, Math. Program. 58: 353–367.

Robinson, S.M. (1979) “Generalized equations and their solutions, part I: basic theory”, Math. Program. Study 10: 128–141.

Robinson, S.M. (1980)“Strongly regular generalized equations”, Math Oper. Res. 5: 43–62.

Robinson, S.M. (1982) “Generalized equations and their solutions, part II: Application to nonlinear programming”, Math. Program. Study 19: 200–221.

Rockafellar, R.T. (1984) “Lipschitzian properties of multifonctions”, Nonlinear Analysis 9: 867–885.

Rockafellar, R.T.; Wets, R.J.B. (1988) Variational analysis. A Series of Comprehensives Studies in Mathematics 317, Springer.

Van Den Dries, L.; Miller, C. (1996) ”Geometric categories and o-minimal structures”, Duke Math. J. 84: 497–540

Comentarios

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...