Resumen
En este trabajo usando la nocion de ω-distancistancia sobre un espacio métrico obtenemos algunas generalizaciones del teorema de Rakotch [10].
Citas
Caristi, J. (1976) “Fixed Point theorems for satisfying inwardness conditions”, Trans. A.M.S. 215: 241–251.
Chu, S.C.; Diaz, J.B. (1965) “Remarks on a generalization of Banach’s Principle of contraction mappings”, J. Math. Anal. Appl. 11: 440–446.
Ciric, L.J. (1974) “A generalization of Banach’s contraction principle”, Proc. A.M.S. 45: 267–273.
Edelstein, M. (1961 y 1995) “An extension of Banach’s Contraction Principle”, Proc. A.M.S. 12(7). 10a edición: 1995.
Ekeland, I. (1979) “Non-convex minimization problems”, Bull. A.M.S. 1: 443–474.
Kada, O.; Suzuki, T.; Takahashi, W. (1996) “Non convex minimization theorems and fixed point theorems in complete metric spaces”, Math. Japon. 44: 381–391.
Kannan, R. (1969) “Some results on fixed points-II”, Amer. Math. Monthly 76: 405–408.
Morales, J.R. Generalizations of some fixed point theorems, (to appear).
Nadler Jr., S.B. (1969) “Multivalued contraction mappings”, Pacif. Journ. Math. 30: 475–488.
Rakotch, E. (1962) “A note on contractive mappings”, Proc. A.M.S. 13: 459–465.
Rus, I.A. (1983) “Seminar on fixed point theory”, Preprint 3, Babes-Bolyai University, Faculty of Mathematics.
Singh, S.P. (1972) “Fixed point theorems in metric spaces”, Riv. Mat. Univ. Parma 3(1): 37–40.
Singh, K.L.; Deb, S.; Gardner, B. (1972) “On contraction mappings”, Riv. Mat. Univ. Parma 3(2): 143–151.
Subrahmanyan, P.V. (1974) “Remarks on some fixed point theorems related to Banach’s Contraction Principle”, J. Math. Phys. Sci. 8: 445–457.
Suzuki, T.; Takahashi, W. (1996) “Fixed point theorems and characterizations of metric completeness”, Top. Meth. in Nonlinear Analysis 8: 371–382.
Suzuki, T. (1997) “Several fixed point theorems in complete metric spaces”, Yokohama Mathematical Journ. 44: 61–72.
Takahashi, W. (1991) “Existence theorems generalizing fixed point theorems for multivalued mappings”, in Fixed Point Theory and Applications, Pitman Research Notes in mathematics, Series 252: 397–406.
Telci, M.; Tas, K. (1992) “Some fixed point theorems on an arbitrary metric space”, Math. Balk. 6(3): 251–255.