Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
SC: un nuevo criterio difuso para resolver problemas de ingeniería y de optimización con restricciones
PDF (English)
PS (English)
DVI (English)

Palabras clave

particle swarm optimization (PSO)
optimization
optimización por enjambres de partículas
optimización

Cómo citar

De los Cobos Silva, S. G., Gutiérrez-Andrade, M. A., Rincón-García, E. A., Lara-Velázquez, P., Mora-Gutiérrez, R. A., & Ponsich, A. S. (2017). SC: un nuevo criterio difuso para resolver problemas de ingeniería y de optimización con restricciones. Revista De Matemática: Teoría Y Aplicaciones, 23(1), 111–142. https://doi.org/10.15517/rmta.v23i1.22353

Resumen

En este trabajo se presenta un novedoso sistema de convergencia (SC), sus fundamentos y la experiencia computacional. Se implementó en un algoritmo PSO monoobjetivo de tres fases: Estabilización, generación y búsqueda en amplitud, generación y búsqueda a profundidad, el cual se probó con diversos problemas benchmark tanto de ingeniería como de la serie CEC2006. La experiencia computacional y la comparación con resultados previamente reportados se presenta. En algunos casos, se mejoran los resultados de la literatura.

https://doi.org/10.15517/rmta.v23i1.22353
PDF (English)
PS (English)
DVI (English)

Citas

Aragon, V.S.; Coello, C.A.C. (2010) “A modified version of a t-cell algorithm for constrained optimization problems”, Int. J. Numer. Methods Eng. 84(3): 351–378.

Belegundu, A.D. (1982) A Study of Mathematical Programming Methods for Structural Optimization. Ph.D. Thesis, Department of Civil Environmental Engineering, University of Iowa, Iowa City.

Coello, C.A.C. (2000) “Use of a self-adaptive penalty approach for engineering optimization problems”, Comput. Ind. 41(2): 113–127.

Deb, K. (1991) “Optimal design of a welded beam via genetic algorithms”, AIAA J. 29(11): 2013–2015.

de-los-Cobos-Silva, S.G. (2015) “SC: system of convergence. Theory and fundaments”, Revista de Matemática: Teoría y Aplicaciones 22(2): 341–367.

Dubois, D.; Prade, H. (1978) “Operations on fuzzy numbers”, International Journal of Systems Science 9(6): 613–626.

Elsayed, S.M.; Sarker, R.A.; Essam, D.L. (2012) “On an evolutionary approach for constrained optimization problem solving”, Applied Soft Computing 12(10): 3208–3227.

Gavana, A. (2007?) “Global optimization benchmarks and AMPGO. Test functions”, in: http://infinity77.net/global_optimization/

Glover, F. (1989) “Tabu search, Part I”, ORSA Journal on Computing 1(3): 190–206.

Glover, F. (1998) “A template for scatter search and path relink”, in: J.K. Hao, E. Lutton, E. Ronald, M. Schoenauer & D. Snyers (Eds.) Artificial Evolution, Lecture Notes on Computer Science 1363, Springer, Berlin: 1–51.

He, Q.; Wang, L. (2007a) “An effective co-evolutionary particle swarm optimization for constrained engineering design problems”, Eng. Appl. Artif. Intell. 20(1): 89–99.

He, Q.; Wang, L. (2007b) “A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization”, Appl. Math. Comput. 186(2): 1407–1422.

Hedar, A.R. (2007?) “Global optimization test problems”, in: http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/go.htm

Hibbeler, R.C. (2000) Mechanics of Materials, 8th ed. Prentice Hall, New Jersey.

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor MI.

Imran, M.; Hashima, R.; Khalid, N.E.A. (2013) “An overview of particle swarm optimization variants”, Procedia Engineering 53: 491–496.

Kalami Heris, S.M. (s.f.) “S. Mostapha Kalami Heris’ homepage”, http://www.kalami.ir

Kannan, B.K.; Kramer, S.N. (1994) “An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design”, J. Mech. Des. 116(2): 405–411.

Kennedy, J.; Eberhart, R. (1995) “Particle swarm optimization”, in: Proc. of the IEEE International Conference on Neural Networks, vol. 4: 1942–1948.

Kennedy, J.; Eberhart, R.C.; Shi, Y. (2001) Swarm Intelligence. Morgan Kaufmann, San Francisco.

Kirkpatrick, S.; Gelatt, C.; Vecchi, M. (1983) “Optimization by simulated annealing”, Science 220: 671–680.

Liang, J.J.; Runarsson, T.P.; Mezura-Montes, E.; Clerc, M.; Suganthan, P.N.; Coello Coello, C.A.; Deb, K. (2006) “Problem definitions and evaluation criteria for the CEC 2006, special session on constrained real-parameter optimization”, Technical Report, IEEE Congress on Evolutionary Computation, 24 pp.

Liou, T.S.; Wang, M.J.J. (1992) “Ranking fuzzy numbers with integral value”, Fuzzy Sets and Systems 50(3): 247–255.

Liu, C.A. (2007) “New multiobjective PSO algorithm for nonlinear constrained programming problems”, in: R. Wang, E. Shen E. & F. Gu (Eds.) Advances in Cognitive Neurodynamics ICCN: 955-962.

Liu, H.; Cai, Z.; Wang, Y. (2010) “Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization”, Appl. Soft Comput. 10(2): 629–640.

Lu, H.; Chen, W. (2008) “Self-adaptive velocity particle swarm optimization for solving constrained optimization problems”, J. Glob. Opt. 41(3):427–445.

Mazhoud, I.; Hadj-Hamou, K.; Bigeon J.; Joyeux P. (2013) “Particle swarm optimization for solving engineering problems: a new constraint-handling mechanism”, Eng. Appl. of Art. Intel. 26(4): 1263–1273.

Mezura-Montes, E.; Velázquez-Reyes, J.V.; Coello-Coello, C.A. (2006) “Modified differential evolution for constrained optimization”, in: IEEE Congress on Evolutionary Computation: 25–32.

Mezura-Montes, E.; Miranda-Varela, M.E.; Gómez-Ramón, R.C. (2010) “Differential evolution in constrained numerical optimization: An empirical study”, Inf. Sci. 180(22): 4223–4262.

Rao, S.S. (1996) Engineering Optimization: Theory and Practice. Wiley, New York.

Sedighizadeh, D.; Masehian, E. (2009) “Particle swarm optimization methods, taxonomy and applications”, Int. Journal of Computer Theory and Engineering 1(5): 486–502.

Tessema, B.; Yen, G.G. (2009) “An adaptive penalty formulation for con- strained evolutionary optimization”, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 39(3): 565–578.

Toscano-Pulido, G.; Coello, C.A.C. (2004) “A constraint-handling mechanism for particle swarm optimization”, in: IEEE Congress on Evolutionary Computation, vol. 2, IEEE Press: 1396–1403.

Zitzler, E.; Deb, K.; Thiele, L. (2000) “Comparison of multiobjective evolutionary algorithm: empirical results”, Evolutionary Computation 8(2): 173–195

Wang, Y.; Cai, Z.; Zhou, Y. (2009) “Accelerating adaptive trade-off model using shrinking space technique for constrained evolutionary optimization”, Int. J. Numer. Methods Eng. 77(11): 1501–1534.

##plugins.facebook.comentarios##

Descargas

Los datos de descargas todavía no están disponibles.