Resumen

En este artículo se presenta un nuevo método mimético de diferencias finitas para resolver la ecuación no estática de difusión. Éste usa el esquema de Crank-Nicholson para obtener aproximaciones en tiempo y discretizaciones miméticas de segundo orden, para los operadores gradiente y divergencia, en el espacio. La convergenica de este nuevo método es analizada usando el teorema de equivalencia de Lax-Friedrichs. Este análisis es desarrollado para el caso unidimensional. Además del estudio teórico, se dan pruebas prácticas que evidencian que el esquema mimético tipo Crank-Nicholson es mejor que el esquema tradicional de diferencias finitas ya que arroja tasas de convergencia cuadráticas, errores de truncamiento de segundo orden y mejores aproximaciones a la solución exacta.

Palabras clave: método mimético, método de diferencias finitas, ecuación no estática de difusión, teorema de equivalencia de Lax-Friedrichs