Resumen
En este artículo se describen algunos aspectos específicos sobre una implementación computacional para la formulación mixta de elementos virtuales (mixed-VEM, por sus siglas en inglés) del problema lineal de Brinkman en dos dimensiones, con condiciones de frontera de Dirichlet no homogéneas. La formulación empleada fue originalmente propuesta y analizada en CÁCERES, E., GATICA, G.N. AND SEQUEIRA, F.A., A mixed virtual element method for the Brinkman problem. Math. Models Methods Appl. Sci. 27 (2017), no. 4, 707–743. La implementación planteada aquí considera cualquier grado polinomial k >= 0 de manera natural al construir diversas matrices locales de bajo tamaño. Además, se propone un algoritmo para el ensamblaje del sistema lineal global asociado, que garantiza la continuidad de la componente normal en la solución discreta.
Citas
V. Anaya, G. N. Gatica, D. Mora, R. Ruiz-Baier„ An augmented velocityvorticity- pressure formulation for the Brinkman equations, Internat. J. Numer. Methods Fluids 79 (2015), no. 3, 109–137.
V. Anaya, D. Mora, C. Reales, R. Ruiz-Baier, Stabilized mixed approximation of axisymmetric Brinkman flow, ESAIM Math. Model. Numer. Anal. 49 (2015), no. 3, 855–874.
V. Anaya, D. Mora, R. Oyarzúa, R. Ruiz-Baier, A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem, Numer. Math. 133 (2016), no. 4, 781–817.
P.F. Antonietti, L. Beirão da Veiga, D. Mora, M. Verani, A stream virtual element formulation of the Stokes problem on polygonal meshes, SIAM J. Numer. Anal. 52 (2014), no. 1, 386–404.
E. Artioli, L. Beirão da Veiga, C. Lovadina, E. Sacco, E.Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem, Comput. Mech. 60 (2017), no. 3, 355–377.
L. Beirão da Veiga, F. Brezzi, A. Cangiani, L. D. Marini, G. Manzini, A. Russo, Basic principles of virtual elements methods, Math. Models Methods Appl. Sci. 23 (2013), no. 1, 199–214.
L. Beirão da Veiga, F. Brezzi, L.D. Marini, Virtual elements for linear elasticity problems, SIAM J. Numer. Anal. 51 (2013), no. 2, 794–812.
L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, The hitchhiker’s guide to the virtual element method, Math. Models Methods Appl. Sci. 24 (2014), no. 8, 1541–1573.
L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, H(div) and H(curl)-conforming virtual element methods, Numer. Math. 133 (2016), no. 2, 303–332.
L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, Mixed virtual element methods for general second order elliptic problems on poligonal meshes, ESAIM Math. Model. Numer. Anal. 50 (2016), no. 3, 727–747.
L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo,Serendipity face and edge VEM spaces, arXiv preprint, arXiv: 1606.01048v1, 2016.
L. Beirão da Veiga, C. Lovadina, G. Vacca, Virtual elements for the Navier-Stokes problem on polygonal meshes, SIAM J. Numer. Anal. 56 (2018), no.3, 1210–1242.
F. Brezzi, A. Cangiani, G. Manzini, A. Russo, Mimetic finite differences and virtual element methods for diffusion problems on polygonal meshes, I.M.A.T.I.-C.N.R, Technical Report 22PV12/0/0, (2012), 1–27.
F. Brezzi, R.S. Falk, L.D. Marini, Basic principles of mixed virtual element methods, ESAIM Math. Model. Numer. Anal. 48 (2014), no. 4, 1227–1240.
F. Brezzi, L.D. Marini, Virtual element methods for plate bending problems, Comput. Methods Appl. Mech. Engrg. 253 (2013), 455–462.
E. Cáceres, Mixed virtual element methods. Applications in fluid mechanics, tesis, Ingeniero Civil Matemático, Universidad de Concepción, 2015.
E. Cáceres, G.N. Gatica, A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem, IMA J. Numer. Anal. 37 (2017), no. 1, 296–331.
E. Cáceres, G.N. Gatica, F.A. Sequeira, A mixed virtual element method for the Brinkman problem, Math. Models Methods Appl. Sci. 27 (2017), no. 4, 707–743.
E. Cáceres, G.N. Gatica, F.A. Sequeira, A mixed virtual element method for quasi-Newtonian Stokes flows, SIAM J. Numer. Anal. 56 (2018), no. 1, 317–343.
E. Cáceres, G.N. Gatica, F.A. Sequeira, A mixed virtual element method for a pseudostress-based formulation of linear elasticity, Applied Numerical Mathematics 135 (2019), 423–442.
E.B. Chin, J.B. Lasserre, N. Sukumar, Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra, Comput. Mech. 56 (2015), no. 6, 967–981.
A.L. Gain, C. Talischi, G.H. Paulino, On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes, Comput. Methods Appl. Mech. Engrg. 282 (2014), 132–160.
G.N. Gatica, L.F. Gatica, A. Márquez, Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow, Numer. Math. 126 (2014), no. 4, 635–677.
G.N. Gatica, L.F. Gatica, F.A. Sequeira, Analysis of an augmented pseudostress-based mixed formulation for a nonlinear Brinkman model of porous media flow, Comput. Methods Appl. Mech. Engrg. 289 (2015),104–130.
G.N. Gatica, M. Munar, F.A. Sequeira, A mixed virtual element method for the Navier-Stokes equations, Math. Models Methods Appl. Sci. 28 (2018), no. 14, 2719–2762.
G.N. Gatica, M. Munar, F.A. Sequeira, A mixed virtual element method for a nonlinear Brinkman model of porous media flow, Calcolo 55 (2018), no. 2, article 21.
J. Guzmán, M. Neilan, A family of nonconforming elements for the Brinkman problem, IMA J. Numer. Anal. 32 (2012), no. 4, 1484–1508.
M. Juntunen, R. Stenberg, Analysis of finite element methods for the Brinkman problem, Calcolo 47 (2010), no. 3, 129–147.
J. Könnö, R. Stenberg, H(div)-conforming finite elements for the Brinkman problem, Math. Models Methods Appl. Sci. 21 (2011), no.11, 2227–2248.
S.E. Mousavi, N. Sukumar, Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons, Comput. Mech. 47 (2011), no. 5, 535–554.
F.A. Sequeira, P.E. Castillo, Implementación del método LDG para mallas no estructuradas en 3D, Revista de Matemática: Teoría y Aplicaciones 19 (2012), no. 2, 141–156.
A. Sommariva, M. Vianello, Product Gauss cubature over polygons based on Green’s integration formula, BIT Numerical Mathematics 47 (2007), no. 2, 441–453.
P. Vassilevski, U. Villa, A mixed formulation for the Brinkman problem, SIAM J. Numer. Anal 52 (2014), no. 1, 258–281.
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Derechos de autor 2019 Revista de Matemática: Teoría y Aplicaciones