Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Optimización del costo de la cuarentena para la supresión de la epidemia del COVID-19 en México
PDF (English)
PS (English)

Archivos suplementarios

DVI

Palabras clave

coronavirus
quarantine cost
Pontryagin maximum principal
optimal control
coronavirus
costo de una cuarentena
principio del máximo de Pontryagin
control óptimo

Cómo citar

Choque Rivero, A. E., Khailov, E. N., & Grigorieva, E. V. (2020). Optimización del costo de la cuarentena para la supresión de la epidemia del COVID-19 en México. Revista De Matemática: Teoría Y Aplicaciones, 28(1), 55–78. https://doi.org/10.15517/rmta.v28i1.42077

Resumen

En este trabajo empleamos la teoría de control óptimo para encontrar una cuarentena óptima y estrategias para la erradicación de la propagación de la infección por COVID-19 en la población humana mexicana. En un modelo SEIR, introducimos un control acotado que es una función respecto del tiempo, la cual refleja las medidas de la cuarentena. La función objetivo a minimizar es la suma ponderada del nivel total de infección en la población y el costo total de la cuarentena. Planteamos un problema de control óptimo que representa la búsqueda de una estrategia eficaz de una cuarentena. Resolvemos este problema analíticamente y numéricamente. Establecemos analíticamente las propiedades del control óptimo correspondiente aplicando el principio del máximo de Pontryagin. La solución óptima se obtiene resolviendo un problema de valor de frontera de dos puntos asociado al principio del máximo. Usamos el software MATLAB. Presentamos una discusión detallada de los resultados y las correspondientes conclusiones prácticas.

https://doi.org/10.15517/rmta.v28i1.42077
PDF (English)
PS (English)

Citas

I.H. Aslan, M. Demir, M.M. Wise, S. Lenhart, Modeling COVID-19: forecasting and analyzing the dynamics of the

outbreak in Hubei and Turkey, MedRxiv (2020), 1–17. Doi: 10.1101/2020.04.11.20061952

F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, New York

Heidelberg-Dordrecht-London, 2012. Doi: 10.1007/978-1-4614-1686-9

Z. Cao, Q. Zhang, X. Lu, D. Pfeiffer, Z. Jia, H. Song, D.D. Zeng, Estimating the effective reproduction number of the

-nCoV in China, MedRxiv, (2020), 1–8. Doi: 10.1101/2020.01.27.20018952

T.-M. Chen, J. Rui, Q.-P. Wang, Z.-Y. Zhao, J.-A. Cui, L. Yin, A mathematical model for simulating the phase-based

transmissibility of a novel coronavirus, Infect. Dis. Poverty. 9(2020), no. 24, 1–8. Doi: 10.1186/s40249-020-00640-3

W.H. Fleming, R.W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, Berlin, 1975. Doi:

1007/978-1-4612-6380-7

H. Gaff, E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models, Math. Biosci. Eng. 6(2009), no. 3, 469–492. Doi: 10.3934/mbe.2009.6.469

Gobierno de la Ciudad de México, El modelo epidemiológico del Gobierno de la Ciudad de México, 2020. https://modelo.covid19.cdmx.gob.mx/modelo-epidemico

Gobierno de México, Proyecciones de la población de México y de las entidades federativas, 2016-2050, CONAPO, 2019. https://www.gob.mx/cms/uploads/attachment/file/487395/09_CMX.pdf

Gobierno de México, Indicadores demográficos de México de 1950 a 2050, CONAPO,

http://www.conapo.gob.mx/work/models/CONAPO/Mapa_Ind_Dem18/index_2.html

Gobierno de México, Aviso epidemiológico – Casos de infección respiratoria asociados a Coronavirus (COVID-19),

Dirección General de Epidemiología, 2020. https://www.gob.mx/salud/es

E.V. Grigorieva, E.N. Khailov, Optimal intervention strategies for a SEIR control model of Ebola epidemics,

Mathematics 3(2015), no. 4, 961–983. Doi 10.3390/math3040961

E.V. Grigorieva, E.N. Khailov, Estimating the number of switchings of the optimal interventions strategies for SEIR

control models of Ebola epidemics, Pure and Applied Functional Analysis 1(2016), no. 4, 541–572.

E.V. Grigorieva, P.B. Deignan, E.N. Khailov, Optimal control problem for a SEIR type model of Ebola epidemics, Revista de Matemática: Teoría y Aplicaciones 24(2017), no. 1, 79–96. Doi: 10.15517/RMTA.V24I1.27771

E. Grigorieva, E. Khailov, Optimal preventive strategies for SEIR type model of the 2014 Ebola epidemics, Dyn.

Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms. 24(2017), 155–182.

E. Grigorieva, E. Khailov, Determination of the optimal controls for an Ebola epidemic model, Discrete Cont. Dyn.

Syst. Ser. S. 2018, vol. 11 (6), 1071–1101. Doi: 10.3934/dcdss.2018062

J. Jia, J. Ding, S. Liu, G. Liao, J. Li, B. Duan, G. Wang, R. Zhang, Modeling the control of COVID-19: impact of policy

interventions and meteorological factors, Electron J. Differ. Eq. 23(2020), 1–24. https://ejde.math.txstate.edu/Volumes/2020/23/jia.pdf

Y. Jing, L. Minghui, L. Gang, Z.K. Lu, Monitoring transmissibility and mortality of COVID-19 in Europe, Int. J. Infect. Dis. (2020), 1–16. Doi: 10.1016/j.ijid.2020.03.050

E. Jung, S. Lenhart, Z. Feng, Optimal control of treatments in a twostrain tuberculosis model, Discrete Cont. Dyn.

Syst. Ser. B. 2(2002), no.4, 473–482. Doi: 10.3934/dcdsb.2002.2.473

U. Ledzewicz, H. Schättler, On optimal singular controls for a general SIR-model with vaccination and treatment,

Discrete Cont. Dyn. Syst. 2011, supplement, 981–990.

E.B. Lee, L. Marcus, Foundations of Optimal Control Theory, John Wiley&Sons, New York NY, USA, 1967. Doi:

2307/2343766

Y. Liu, A.A. Gayle, A. Wilder-Smith, J. Rocklöv, The reproductive number of COVID-19 is higher compared to SARS

coronavirus, J. Travel Med. 2020, 1–4. Doi: 10.1093/jtm/taaa021.

Z. Liu, P. Magal, O. Seydi, G. Webb, Understanding unreported cases in the COVID-19 epidemic outbreak in

Wuhan, China, and the importance of major public health interventions, Biology 9(2020), no. 50, 1–12.

Doi: 10.3390/biology9030050

J.P. Mateus, P. Rebelo, S. Rosa, C.M. Silva, D.F.M. Torres, Optimal control of non-autonomous SEIRS models with

vaccination and treatment, Discrete Cont. Dyn. Syst. Ser. S. 11(2018), no. 6, 1179–1199. Doi:10.3934/

dcdss.2018067

M. Park, A.R. Cook, J.T. Lim, Y. Sun, B.L. Dickens, A systematic review of COVID-19 epidemiology based on current

evidence, J. Clin. Med. 2020, 9, 967, 1–13. Doi: 10.3390/jcm9040967

L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mishchenko, Mathematical Theory of Optimal

Processes, John Wiley & Sons, New York NY, USA, 1962.

F. Saldaña, H. Flores-Arguedas, J.A. Camacho-Gutiérrez, I. Barrandas, Modeling the transmission dynamics and

the impact of the control interventions for the COVID-19 epidemic outbreak, Math. Biosci. Eng., 2020. https://www.researchgate.net/publication/340902930_Modeling_the_transmission_dynamics_and_the_impact_of_the_control_interventions_for_the_COVID-19_epidemic_outbreak

H. Schättler, U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies: An Application of

Geometric Methods, Springer, New York-Heidelberg-Dordrecht-London, 2015.

C.J. Silva, D.F.M. Torres, Optimal control for a tuberculosis model with reinfection and post-exposure interventions, Math. Biosci. 244 (2013), 153 –164. Doi: 10.1016/j.mbs.2013.05.005

R. Smith?, Modelling Disease Ecology with Mathematics, AIMS, Springfield MO, USA, 2008.

B. Tang, X. Wang, Q. Li, N.L. Bragazzi, S. Tang, Y. Xiao, J. Wu,

Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions, J. Clin. Med. 9(2020), no. 462, 1–13. Doi: 10.3390/jcm9020462

P. van den Driessche, J. Watmough, Reproduction numbers and subthreshold endemic equilibria for

compartmental models of disease transmission, Math. Biosci. 180(2002), 29–48. Doi: 10.1016/s0025

(02)00108-6

World Health Organization, Coronavirus disease (COVID-2019) situation reports. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports

J.T. Wu, K. Leung, G.M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study, Lancet, 395(2020), no. 10225 , 689–697. Doi: 10.1016/S0140-6736(20)30260-9

S. Zhao, Q. Lin, J. Ran, S.S. Musa, G. Yang, W. Wang,..., M.H. Wang, Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak, Int. J. Infect. Dis. 92(2020), 214–217. Doi:10.1016/j.ijid.2020.01.050

Z. Zhuang, S. Zhao, Q. Lin, P. Cao, Y. Lou, L. Yang, D. He, Preliminary estimation of the novel coronavirus disease (COVID-19) cases in Iran: A modelling analysis based on overseas cases and air travel data, Int. J. Infect. Dis. 94(2020), 29–31. Doi: /10.1016/j.ijid.2020.01.050

Comentarios

Descargas

Los datos de descargas todavía no están disponibles.