Abstract
In this work we propose a short and simple introduction of the meshless method known as finite pointset method (FPM). We describe the main concepts involved in the FPM method like: the pointset generation, point neighbors search, the spatial derivatives approximation by the moving least square method and the solution of the resultant ordinary differential system. As application of the method we solve the viscid an inviscid Bugers equation. The numerical solutions are compared with the analytical solution and a convergence analysis via numerical experimentation is performed. We provide the MATLAB codes for the main steps of the FPM method, which can be used to solve more complex problems.
References
Armentano, M.G.; Durán, R.G. (2001) “Error estimates for moving least square approximations”, Applied Numerical Mathematics 37(3) : 397–416.
Dilts, G.A. (1999) “Moving least squares particle hydrodynamics I, consistency and stability”, Int. J. Numer. Meth. Engng 44(8): 1115–1155.
Jensen, P.S. (1972) “Finite difference techniques for variable grids”, Computers & Structures 2(1-2): 17–29.
Kröner, D. (1997) Numerical Schemes for Conservation Laws. Wiley Teubner. New-York.
Kuhnert, J. (1999) General Smoothed Particle Hydrodynamics. Ph.D. Thesis, Kaiserslautern University, Kaiserslautern, Germany.
Lancaster, P.; Salkauskas, K. (1981) “Surfaces generated by moving least square methods”,Math of Comp 37(155): 141–158.
Mirzaei, D.; Schaback, R.; Dehghan, M. (2012) “On generalized moving least squares and diffuse derivatives”, IMA J Numer Anal 32: 983–1000.
Moeller, A. (2014) “Influence of the counter blow air flow during container glass blow and blow process”, in: Proceedings 12th ESG (European Glass Society), 21–24 September 2014, Parma. Italy.
Morris, J.P. (1995) “An overview of the method of smoothed particle hydrodynamics”, Preprint, Arbeitsgruppe Technomathematik, Technische Universität Kaiserslautern, Germany.
Oñate, E.; Idelsohn, S.; Zienkiewicz, O.C.; Taylor, R.L. (1996) “A finite point method in computational mechanics. Applications to convective transport and fluid flow”, International Journal for Numerical Methods in Engineering 39(22): 3839–3866.
Paiva, A.; Petronetto, F.; Tavares, G.; Lewiner T. (2009) “Simulacão de Fluidos sem Malha: Uma introducão ao método SPH”, in: 27 Colóquio Brasileiro de Matemática, IMPA. Rio de Janeiro.
Prätzel-Wolters, D. (2014) “Jahresberichte Fraunhofer Institut für Technound Wirtschaftsmathematik ITWM”, Kerner Druck GmbH, Kaiserslautern.
Tiwari, S.; Manservisi, S. (2002) “Modelling incompressible Navier-Stokes Flows by LSQ-SPH”, The Nepali Math Sc. Report 20(2): 1–23.
Comments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2016 Revista de Matemática: Teoría y Aplicaciones