Resumen
Se deriva el comportamiento hidroestático del proceso de exclusión simple con saltos largos en contacto con depósitos infinitos con diferentes densidades. La tasa de salto es descrita por una función de probabilidad p que es proporcional a | · |−(γ+1) para 1 < γ < 2 (caso súper- difusivo). Los depósitos de partículas añaden o retiran partículas con una tasa propocional a κ > 0.
Citas
C. Bernardin, P. Gonçalves, B. Jiménez-Oviedo, Slow to fast infinitely extended reservoirs for the symmetric exclusion process with long jumps, Markov Processes and Related Fields 25(2017), no. 2, 217–274. https://hal.archives-ouvertes.fr/hal-01474718/document
C. Bernardin, P. Gonçalves, B. Jiménez-Oviedo, A microscopic model for a one parameter class of fractional Laplacians with Dirichlet boundary conditions. Archive for Rational Mechanics and Analysis, (2020) 1–48. Doi: 10.1007/s00205-020-01549-9
C. Bernardin, B. Jiménez-Oviedo, Fractional Fick’s law for the boundary driven exclusion process with long jumps, Latin American Journal of Probability and Mathematical Statistics 14(2016), no. 1, 473–501. Doi: 10. 30757/ALEA.v14-25
P. Billingsley, Convergence of Probability Measures, John Wiley & Sons,
New York, 2013.
Q. Guan, Z. Ma, Reflected symmetric α-stable processes and regional fractional Laplacian, Probability theory and related fields, Springer 134(2005), no. 4, 649–694. Doi: 10.1007/s00440-005-0438-3
C. Mou, Y. Yi, Interior regularity for regional fractional Laplacian, Communications in Mathematical Physics, Springer 340(2015), no. 1, 233–251. Doi: 10.1007/s00220-015-2445-2
J. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete and Continuous Dynamical Systems- Series S 7(2014), no. 4, 857–885. Doi: 10.3934/dcdss.2014.7.857