Métodos y Materiales ISSN Impreso: 2215-342X ISSN electrónico: 2215-4558

OAI: https://revistas.ucr.ac.cr/index.php/materiales/oai
El Uso del aditivo mineral como modificador de las propiedades mecánicas en el concreto: una revisión
PDF
HTML
XML

Palabras clave

Escoria de alto horno
cenizas volantes
humo de sílice
ceniza de cascarilla de arroz
aditivo mineral.
Blast furnace slag
fly ash
silica fume
rice husk ash
mineral additive

Cómo citar

Muñoz Pérez, S. P., Burga Carrasco, J. J., Cordova Guerrero, R., Castro Palma, J. A., Bonilla Bances, K. E., & Ramos Castillo, S. E. (2021). El Uso del aditivo mineral como modificador de las propiedades mecánicas en el concreto: una revisión. Métodos Y Materiales, 11, 10–19. https://doi.org/10.15517/mym.v11i0.46106

Resumen

El presente artículo recopila e identifica la adición de ciertos aditivos minerales de uso más frecuente en la industria de la construcción como modificadores del concreto durante su estado fresco y endurecido, los cuales en su mayoría son usados como remplazo parcial del cemento. Actualmente los investigadores buscan optimizar las propiedades del diseño de mezclas dependiendo al uso por el cual son concebidas, así mismo que sea factible económicamente y respetuoso con el medio ambiente. Se revisaron 50 artículos indexados entre los años 2010 y 2021 distribuidos en las siguientes bases de datos: 37 artículos de Scopus, 10 artículos de ScienceDirect, 2 artículos de Springer y 1 artículo de SciELO. Los aditivos en estudio son escoria de alto horno granulada (EAHG), cenizas volantes (CV), humo de sílice (HS), ceniza de cascarilla de arroz (CCA). En su mayoría presentan una mejora considerable en sus características mecánicas de tracción, resistencia a la compresión y módulo de elasticidad. La adición de CV mejora en la mezcla del diseño durante su estado fresco, la CCA durante su estado endurecido y las mejores resistencias para el HS; sin embargo, la EAHG resulta cumplir con casi todas las expectativas en mayor porcentaje y así mismo junto con la CCA, son potencialmente competitivos.

https://doi.org/10.15517/mym.v11i0.46106
PDF
HTML
XML

Citas

Ahmed, A., Hyndman, F., Kamau, J., & Fitriani, H. (2020). Rice husk ash as a cement replacement in high strength sustainable concrete. Materials Science Forum, 1007, 90-98. doi:10.4028/www.scientific.net/MSF.1007.90

Ahmed, O., & Najim, O. (2016). Splitting Tensile Strength of Self-Consolidating Concrete Containing Slag 1. Conference: Toronoto'2016 AES-ATEMA 29th International ConferenceAt: Toronto, Canada, (pp. 110-116). Toronto.

Ali, M., Hanim, M., Tahir, S., Jaafar, C., Mazlán, N., & Amin Matori, K. (2017). The Effect of Commercial Rice Husk Ash Additives on the Porosity, Mechanical Properties, and Microstructure of Alumina Ceramics. Advances in Materials Science and Engineering, 2017, 2586026. doi:10.1155 / 2017/2586026

Amin, M., Tayeh, B., & Agwa, E. (2020). Effect of using mineral admixtures and ceramic wastes as coarse aggregates on properties of ultrahigh-performance concrete. Journal of Cleaner Production, 273. doi:10.1016 / j.jclepro.2020.123073

Anand, N., Antony Godwin, I., & Prince Arulraj, G. (2016). Influence of mineral admixtures on mechanical properties of self-compacting concrete under elevated temperature. Fire and Materials, 40(7), 940-958. doi:10.1002/fam.2353

Antonyamaladhas , Chachithanantham, S., & Ramaswamy, A. (2016). Performance and Behaviour of Ground Granulated Blast Furnace Slag Imparted to Geopolymer Concrete Structural Elements and Analyzed with ANSYS. Advances in Materials Science and Engineering, 2016(2), 1-9. doi:10.1155/2016/7023897

Attah, I., Kufre Etim, R., Uwadiegwu Alaneme, G., & Bassey Bassey, O. (2020). Optimization of mechanical properties of rice husk ash concrete using Scheffe’s theory. SN Applied Sciences, 2(5), 1-13. doi:10.1007/s42452-020-2727-y

Ayesha, Abdullah, M., Hedayet Ali, M., & Hedayet Ali, M. (2018). Study on concrete with rice husk ash. Innovative Infrastructure Solutions, 3(1), 1-8. doi:10.1007/s41062-018-0127-6

Bayuaji, R., Kurniawan, R., Yasin, A., Fatoni, H., & Lutfi, F. (2016). The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength. IOP Conference Series: Materials Science and Engineering, 128, p. 012014. Indonesia. doi:10.1088/1757-899X/128/1/012014

Bheel, N., Ali Jokhio, M., Ahmed Abbasi, J., Bux Lashari, H., Imran Qureshi, M., & Salam Qureshi, A. (2020). Rice Husk Ash and Fly Ash Effects on the Mechanical Properties of Concrete. Engineering, Technology and Applied Science Research, 10(2), 5402-5405. doi:10.48084/etasr.3363

Bouarroudj, M., Rémond, S., Bulteel, D., Potier, G., Michel, F., Zhao, Z., & Courard, L. (2021). Use of grinded hardened cement pastes as mineral addition for mortars. Journal of Building Engineering, 34. doi:10.1016 / j.jobe.2020.101863

Boukendakdji, O., Kadri, E.-H., & Kenai, S. (2012). Effects of granulated blast furnace slag and superplasticizer type on the fresh properties and compressive strength of self-compacting concrete. Cement and Concrete Composites, 34(4), 583-590. doi: 10.1016/j.cemconcomp.2011.08.013

Cao, G., Li, Z., & Guo, K. (2017). Analytical study on the change of fluidity of fresh concrete containing mineral admixture with rest time. Journal of Advanced Concrete Technology, 15(11), 713-723. doi:10.3151/jact.15.713

Cuenca-Moyano, G., Martín-Morales, M., Valverde-Palacios, I., Valverde-Espinosa, I., & Zamorano, M. (2014). Influence of pre-soaked recycled fine aggregate on the properties of masonry mortar. Construction and Building Materials, 70, 71-79. doi: 10.1016/j.conbuildmat.2014.07.098

Damayanti, S., Aulia, T., & Hayati, Y. (2020). The effect of fishbone fiber and rice husk ash additive on the mechanical properties of normal concrete. IOP Conference Series: Materials Science and Engineering, 933, p. 012036. Indonesia. doi:10.1088/1757-899X/933/1/012036

Das Bheel, N., Wahab Abro, A., Ali Shar, I., & Hussain Shaikh, Z. (2019). Use of Rice Husk Ash as Cementitious Material in Concrete. Engineering, Technology and Applied Science Research, 9(3), 4209-4212. doi:10.1007/s41062-018-0127-6

Depaa, R., & Felix Kala, T. (2015). Experimental investigation of self healing behavior of concrete using Silica fume and GGBFS as mineral admixtures. Indian Journal of Science and Technology, 8(36), 87644. doi:10.17485/ijst/2015/v8i36/87644

Hariharan, A., Santhi , A., & Mohan , G. (2011). Study on Strength Development of High Strength Concrete Containing Fly ash and Silica fume. International Journal of Engineering Science and Technology, 3(4), 2955-2961.

Hu, L., He, Z., & Zhang, S. (2020). Sustainable use of rice husk ash in cement-based materials: Environmental evaluation and performance improvement. Journal of Cleaner Production, 264, 121744. doi:10.1016/j.jclepro.2020.121744

Hu, X., Shi, C., Shi, Z., & Tong, B. (2017). Early age shrinkage and heat of hydration of cement-fly ash-slag ternary blends. Construction and Building Materials, 153, 857-865. doi:10.1016/j.jksues.2016.12.003

Huang, J., Luo, Z., & Khan, M. (2020). Impact of aggregate type and size and mineral admixtures on the properties of pervious concrete: An experimental investigation. Construction and Building Materials, 265, 120759. doi:10.1016 / j.conbuildmat.2020.120759

Kaïkea, A., Achoura, D., Duplan, F., & Rizzuti, L. (2014). Effect of mineral admixtures and steel fiber volume contents on the behavior of high performance fiber reinforced concrete. Materials and Design, 63, 493-499. doi:10.1016/j.matdes.2014.06.066

Kapoor, K., Singh, S., & Singh, B. (2016). Durability of self-compacting concrete made with Recycled Concrete Aggregates and mineral admixtures. Construction and Building Materials, 128, 67-76. doi:10.1016/j.conbuildmat.2016.10.026

Karthik, S., Rao, P., & Awoyera, P. (2017). Strength properties of bamboo and steel reinforced concrete containing manufactured sand and mineral admixtures. Journal of King Saud University - Engineering Sciences, 29(4), 400-406. doi:10.1016/j.jksues.2016.12.003

Kishor , P., Bhusan Gouda, B., & Mohapasayat, P. (2020). Effect of Ground Granulated Blast Furnace Slag on the Properties of Sea Shell Concrete. Series: Materials Science and Engineering, Volume 970, Online National Conference on "SUSTAINABLE MATERIAL AND PRACTICES FOR INFRASTRUCTURE DEVELOPMENT" (SMPID-2020) 17th-18th September 2020, Odisha, India, 970, p. 012018. doi:10.1088 / 1757-899X / 970/1/012018

Kishor, C., Subhrasweta, B., & Shradha, J. (2020). Effect of rice husk ash on mechanical properties of concrete containing crushed seashell as fine aggregate. Materials Today: Proceedings, 32, 1-6. doi:10.1016/j.matpr.2020.04.049

Lin, C.-Y., & Huang, W.-T. (2015). Effect of mineral viscosity-enhancing admixtures on the solidification of evaporator concentrates. Journal of Hazardous Materials, 298, 294-302. doi:10.1016/j.jhazmat.2015.05.048

Liu, J., & Wang, D. (2017). Influence of steel slag-silica fume composite mineral admixture on the properties of concrete. Powder Technology, 320, 230-238. doi:10.1016/j.powtec.2017.07.052

Liu, S., Wang, Z., & Li, X. (2014). Long-term properties of concrete containing ground granulated blast furnace slag and steel slag. Magazine of Concrete Research, 66(21), 1095-1103. doi:10.1680/macr.14.00074

Mathew, G., & Paul, M. (2014). Influence of fly Ash and GGBFS in laterized concrete exposed to elevated temperatures. Journal of Materials in Civil Engineering, 26(3), 411-419. doi:10.1061/(ASCE)MT.1943-5533.0000830

Mohamed, O., & Al Hawat, W. (2018). Durability and Strength of Sustainable Self-Consolidating Concrete Containing Fly Ash. IOP Conference Series: Materials Science and Engineering, 324, p. 012041. Emiratos Arabes Unidos. doi: 10.1088/1757-899X/324/1/012041

Mohamed, O., & Najm, O. (2017). Compressive strength and stability of sustainable self-consolidating concrete containing fly ash, silica fume, and GGBS. Frontiers of Structural and Civil Engineering, 11(4), 1-6. doi:10.1007/s11709-016-0350-1

Nagrockiene, D., Rutkauskas, A., Pundiene, I., & Girniene, I. (2019). The Effect of Silica Fume Addition on the Resistance of Concrete to Alkali Silica Reaction. IOP Conference Series: Materials Science and Engineering, 660. Lituania. doi:10.1088/1757-899X/660/1/012031

Nuaklong, P., Wongsa, A., Sata, V., Boonserm, K., Sanjayan, J., & Chindaprasirt, P. (2019). Properties of high-calcium and low-calcium fly ash combination geopolymer mortar containing recycled aggregate. Heliyon, 5(9), 02513. doi:10.1016 / j.heliyon.2019.e02513

Pereira, A., da Silva, C., de Araújo Queiroz, D., de Moraes, M., Melges, J., Tashima, M., & Akasaki, J. (2015). Estudo das propriedades mecânicas do concreto com adição de cinza de casca de arroz. Revista Materia, 20(1), 227-238. doi:10.1590/S1517-707620150001.0023

Reddy, D., & Ramaswamy, A. (2017). Influence of mineral admixtures and aggregates on properties of different concretes under high temperature conditions I: Experimental study. Journal of Building Engineering, 14, 103-114. doi:10.1016/j.jobe.2017.09.013

Rodrigues, M., & Beraldo, A. (2010). Caracterização física e mecânica de argamassas à base de cimento Portland e cinza de casca de arroz residual. Engenharia Agricola, 30(2), 193-204. doi:10.1590/s0100-69162010000200001

Saba , A., & Zeyad, A. (2018). Influence of pulverized fly ash on the properties of self-compacting fiber reinforced concrete. Scientific Journal of King Faisal University, 19(2), 55-68.

Sanjay , R., Vijayan, D., Mubarak , P., Subinjith, N., & Santhosh, S. (2020). Effect of silica fume on strength of glass fiber incorporated concrete. AIP Conference Proceedings, 2271, p. 30020. doi:10.1063/5.0024775

Santhosh, S., & Arivalagan, S. (2018). Investigation of m-sand concrete mix with mineral admixtures as partial replacement of cement. International Journal of Civil Engineering and Technology, 9(12), 712-719.

Sathawane, S., Vairagade, V., & Kene, K. (2013). Combine Effect of Rice Husk Ash and Fly Ash on Concrete by 30% Cement Replacement. Procedia Engineering, 51, 35–44. doi:10.1016 / j.proeng.2013.01.009

Shi, Y., Li, X., Li, Y., Peng, Z., & Li, J. (2020). Effect of Tuff Powder Mineral Admixture on the Macro-Performance and Micropore Structure of Cement-Based Materials. Frontiers in Materials, 7, 595997. doi:10.3389 / fmats.2020.595997

Siad, H., Mesbah, H., Mouli, M., Escadeillas, G., & Khelafi, H. (2014). Influence of Mineral Admixtures on the Permeation Properties of Self-Compacting Concrete at Different Ages. Arabian Journal for Science and Engineering, 39(5), 3641-3649. doi:10.1007/s13369-014-1055-1

Singh, S., Ransinchung, G., & Kumar, P. (2017). Effect of mineral admixtures on fresh, mechanical and durability properties of RAP inclusive concrete. Construction and Building Materials, 156(15), 19-27. doi:10.1016/j.conbuildmat.2017.08.144

Soares dos Anjos, M. A., Farias, E. C., Ferreira, R., & Pederneiras, C. M. (2020). Analysis Of Mechanical Properties And Durability Of Selfcompacting. In book: NEW TRENDS IN GREEN CONSTRUCTION.

Sukontasukkul, P., Chindaprasirt, P., Pongsopha, P., Phoo-Ngernkham, T., Tangchirapat, W., & Banthia, N. (2020). Effect of fly ash/silica fume ratio and curing condition on mechanical properties of fiber-reinforced geopolymer. Journal of Sustainable Cement-Based Materials, 9(4), 1-15. doi:10.1080/21650373.2019.1709999

Temiz, H., & Kantarci, F. (2014). Investigation of durability of CEM II B-M mortars and concrete with limestone powder, calcite powder and fly ash. Construction and Building Materials, 68, 517-524. doi:10.1016/j.conbuildmat.2014.06.078

Toshiki , A., & Takashi , F. (2021). Improvement of Concrete Properties using Granulated Blast Furnace Slag Sand. Journal of Advanced Concrete Technology, 19(2), 118-132. doi:10.3151/jact.19.118

Wang, X.-Y., & Park, K.-B. (2015). Analysis of compressive strength development of concrete containing high volume fly ash. Construction and Building Materials, 98, 810-819. doi:10.1016/j.conbuildmat.2015.08.099

Zhu, Y., Zhang, Z., Yang, Y., & Yao, Y. (2014). Measurement and correlation of ductility and compressive strength for engineered cementitious composites (ECC) produced by binary and ternary systems of binder materials: Fly ash, slag, silica fume and cement. Construction and Building Materials, 68, 192-198. doi:10.1016/j.conbuildmat.2014.06.080

Comentarios

Descargas

Los datos de descargas todavía no están disponibles.