Resumen
Actualmente el sargazo por las grandes cantidades que han arribado en las costas de México y en otras partes del mundo, se ha convertido en un problema ambiental, económico y de salud, lo que hace importante su estudio para proporcionarle una valorización. El sargazo ha sido utilizado para la elaboración de biocombustibles y biorremediación, sin embargo, por la gran cantidad de este material orgánico, la industria de la construcción lo ha utilizado en estado crudo como sustituto cementante. El objetivo de este artículo es conocer el potencial uso de la ceniza de sargazo como sustituto cementante comparándolo con diversas biomasas orgánicas que han sido utilizadas para el mismo fin, para lo cual se ha realizado una revisión bibliográfica sobre biomasas orgánicas, sus características, porcentajes de sustitución y su aplicación. Lo anterior proporcionará conocimiento de las propiedades que tiene que contener la ceniza para su aplicación ya sea en morteros o pastas que mejoren la durabilidad a largo plazo, para avanzar en la construcción sustentable.
Citas
Ahmad M.R., Chen B, Duan H. (2020). Improvement effect of pyrolyzed agro-food biochar on the properties of magnesium phosphate cement. Science of the Total Environment. 1-13.
Akhtar A., Sarmah A. (2018). Novel biochar-concrete composites: Manufacturing, characterization and evaluation of the mechanical properties. Science of the Total Environment. 408-416.
Akhtar A., Sarmah A. (2018a). Strength improvement of recycled aggregate concrete through silicon rich char derived from organic waste . Journal of Cleaner Production. 411-423
American Society of Testing Materials ASTM C-618-17a. (2017). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete,.
Antar, M.; Lyu, D.; Nazari, M.; Shah, A.; Zhou, X.; Smith, D.L. (2021). Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renew. Sustain. Energy Rev. 139, 110691.
Asdrubali F., D’Alessandro F,. Schiavoni S. (2015). A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies. 4 1-17. https://doi.org/10.1016/j.susmat.2015.05.002
Barron, A. (2010). Hydration of Portland Cement [WWW Document]. OpenStax-CNX Modul. m16447. http://cnx.org/contents/Lbv3xcBF@11/Hydration-of-Portland- Cement#eip1411
Busch, T, Johnson, M, Pioch, T. (2022). Corporate carbon performance data: Quo vadis? Journal Ind Ecol. 26: 350– 363. https://doi.org/10.1111/jiec.13008
Buschmann, A.H., Camus, C., Infante, J., Neori, A., Israel, A., ́ Hernández-Gonzalez, ́ M.C., Pereda, S.V., Gomez-Pinchetti, J.L., Golberg, A., Tadmor-Shalev, N., Critchley, A.T. (2017). Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol. 52, 391–406. https://doi.org/10.1080/09670262.2017.1365175.
Cabanillas-Teran, N., Hernández-Arana, H., Ruiz-Zárate, M., Vega-Zepeda, A. Y Sanchez-Gonzalez, A. (2019). Sargassum blooms in the Caribbean alter the trophic structure of the sea urchin Diadema antillarum. PeerJ 7: e7589. https://doi.org/10.7717/peerj.7589.
Castillo, D., Cruz, J. C., Trejo-Arroyo, D. L., Muzquiz, E. M., Zarhri, Z., Gurrola, M. P., & Vega-Azamar, R. E. (2022). Characterization of poultry litter ashes as a supplementary cementitious material. Case Studies in Construction Material. 17. https://doi.org/10.1016/j.cscm.2022.e01278
Cha, J.S.; Park, S.H.; Jung, S.-C.; Ryu, C.; Jeon, J.-K.; Shin, M.-C.; Park, Y.-K. (2016). Production and utilization of biochar: A review. J. Ind. Eng. Chem. 40, 1–15.
Chahbi M., Mortadi A., El Moznine R., Monkade M., Zaim S., Nmila R. & Rchide H. (2022) A new approach to investigate the hydration process and the effect of algae powder on the strength properties of cement paste. Australian Journal of Mechanical Engineering 1-10.
Chávez V., Uribe-Martínez, A.; Cuevas, E.; Rodríguez-Martínez, R.E.; van Tussenbroek, B.I.; Francisco, V.; Estévez, M.; Celis, L.B.; Monroy-Velázquez, L.V.; Leal-Bautista, R.; Álvarez-Filip, L.; García-Sánchez, M.; Masia, L.; Silva, R. (2020). Massive Influx of Pelagic Sargassum spp. on the Coast if the Mexican Caribbean 2014-2020: Challenges and Opportunities. Water 1-24.
Comité ACI 116. (s.f.). (2000). Terminología del cemento y hormigón.
Cosentino I.,Restucccia L., Ferro G. Tulliani J. (2019). Type of materials, pyrolysis conditions, carbon content and size dimensions: The parameters that influence the mechanical properties of biochar cement-based composites. Theoretical and Applied Fracture Mechanics. 1-10. https://doi.org/10.1016/j.tafmec.2019.102261
Desrochers, Anne, Cox, Shelly-Ann, Oxenford, Hazel A., van Tussenbroek, Brigitta I. (2020a). Sargassum Uses Guide: A Resource for Caribbean Researchers, Entrepreneurs and Policy Makers. CERMES Technical Report No. 97 Special Edition.
Desrochers, Anne, Cox, Shelly, Oxenford, Hazel, Van Tussenbroek, Brigitta. (2020b). Sargassum uses guide: a resource for caribbean researchers, entrepreneurs and policy makers lead. Food and Agriculture Organization of the United Nations (FAO) Produced (97), 100.
Fernández,F, C. J. Boluda, J. Olivera, L. A. Guillermo, B. Gómez, E. Echavarría, A. M. Gómez. (2017). Análisis elemental prospectivo de la biomasa algal acumulada en las costas de la republica dominicana durante 2015. Centro Azucar 44 11-22.
Freestone, D., Roe, H., Laffoley, D., Morrison, K., Rice, J., Inniss, L., Trott, T.M. (2017). Sargasso Sea. In: United Nations (Ed.), The First Global Integrated Marine Assessment. Cambridge University Press, Cambridge, pp. 893–898. https://doi.org/10.1017/9781108186148.060.
Galán-Marín, C., Rivera-Gómez, C., Petric, J. (2010). Clay-based composite stabilized with natural polymer and fibre. Construct. Build. Mater. 24 (8), 1462–1468. https://doi.org/10.1016/j.conbuildmat.2010.01.008.
Gaurav, N., Sivasankari, S., Kiran, G., Ninawe, A., Selvin, J. (2017). Utilization of bioresources for sustainable biofuels: a Review. Renew. Sustain. Energy Rev. 73, 205–214. https://doi.org/10.1016/j.rser.2017.01.070.
Gupta S., Ewi-Kua H. (2020a). Application of rice husk biochar as filler in cenosphere modified mortar: Preparation, characterization and performance under elevated temperature. Construction and Building Materials. 1-16. https://doi.org/10.1016/j.conbuildmat.2020.119083
Gupta S., Ewi-Kua H y Sze-Dai P. (2020b). Effect of biochar on mechanical and permeability properties of concrete exposed to elevated temperature. Construction and Building Materials. 1-16. https://doi.org/10.1016/j.conbuildmat.2019.117338
Gupta S., Ewi-Kua H, Yang Low C. (2018a). Use of biochar as carbon sequestering additive in cement mortar. Cement and Concrete Composites. 1-63. https://doi.org/10.1016/j.cemconcomp.2017.12.009.
Gupta S., Krishnan P., Kashani A y Ewi-Kua H. (2020c). Application of biochar from coconut and wood waste to reduce shrinkage and improve physical properties of silica fume-cement mortar. Construction and Building Materials, 1-15.
Gupta S., Palansooriya K., Dissanayake P., Ok Y. Y Ewi-Kua H. (2020). Carbonaceous inserts from lingocellulosic and non-lignocellulosic sources in cement mortar: Preparation conditions and its effect on hydration kinetics and physical properties. Construction and Building Materials. 1-17. https://doi.org/10.1016/j.conbuildmat.2020.120214
Gupta S., Wei-Kua H., Pang S. Biochar-mortar composite: (2018) Manufacturing, evaluation and physical properties and economic viability. Construction and Building Materials. 874-889. https://doi.org/10.1016/j.conbuildmat..02.104
Herráiz, Teresa Real, Julia, I., Herráiz, Real, Domingo, Laura Montalbán, Domingo, Francisco Carrión. (2016). Posidonia oceanica used as a new natural fibre to enhance the performance of asphalt mixtures. Construct. Build. Mater. 102, 601–612. https://doi.org/10.1016/j.conbuildmat.2015.10.193.
Lee, S.Y.; Sankaran, R.; Chew, K.W.; Tan, C.H.; Krishnamoorthy, R.; Chu, D.-T.; Show, P.-L. (2019). Waste to bioenergy: A review on the recent conversion technologies. BMC Energy, 1, 4.
Li J., Zhang F., Muhammad Y., Liu Y., Wei Y. y Chen H. (2019). Fabrication and properties of wide temperature domain pavement seaweed modified bio-bitumen. Construction and Building Materials. 1-14. https://doi.org/10.1016/j.conbuildmat.2019.117079
Maljaee H.,Madadi R., Paiva H., Tarelho L y Ferreira V. (2021). Incorporation of biochar in cementitious materials: A roadmap of biochar selection . Construction and Building Materials. 1-18. https://doi.org/10.1016/j.conbuildmat.2021.122757
Martinez-Daranas B. y Suárez A. (2019). An overview of Cuban seagrasses. Bull Mar Sci. 94(2):269–282.
Maurer, A.S., Neef, E.D., Stapleton, S. (2015). Sargassum accumulation may spell trouble for nesting sea turtles. Front. Ecol. Environ. 13, 394–395. https://doi.org/10.1890/1540-9295-13.7.394.
Muthukrishnan S., Grupta S y Wei-Kua H. (2019). Application of rice husk biochar and thermally treated low silica rice husk ash to improve physical properties of cement mortar. Theoretical and applied fracture mechanics. 1-46. https://doi.org/10.1016/j.tafmec.2019.102376
Oh, D.-Y., Noguchi, T., Kitagaki, R., Park, W.-J. (2014). CO2 emission reduction by reuse of building material waste in the Japanese cement industry. Renew. Sust. Energ. Rev. 38:796–810. https://doi.org/10.1016/j.rser.2014.07.036.
Park J.H., Kim Y.U., Jeon J., Yun B.Y., Kang Y y Kim S. (2021). Analysis of biochar-mortar composite as humidity control material to improve the building energy and hygrothermal performance. Science of the Total Environment. 1-8. https://doi.org/10.1016/j.scitotenv.2021.145552
Restuccia L., y Ferro G. (2016). Promising low cost carbon-based materials to improve strength and toughness in cement composites. Construction and Building Materials. 1034-1043. https://doi.org/10.1016/j.conbuildmat.2016.09.101
Roberts K.G., Gloy B.A., Joseph S., Scott N. y Lehmann J. (2010). Life cycle assessment of biochar systems: Estimating the energetic, economic and climate change potential. Environmental Science & Technology, 827-833. https://doi.org/10.1021/es902266r
Rodier L., Bilba K. y Arsene M.A. (2019). Utilization of bio-chars from sugarcane bagasse pyrolysis in cement-based composites. Industrial Crops & Products. 1-9. https://doi.org/10.1016/j.indcrop.2019.111731.
Rodríguez-Martínez, R.E., Medina-Valmaseda, A.E., Blanchon, P., Monroy-Velazquez, L.V., Almazan-Becerril, A., Delgado-Pech, B., Vasquez-Yeomans, L., Francisco, V., García-Rivas, M.C.(2019). Faunal mortality associated with massive beaching and decomposition of pelagic Sargassum. Mar. Pollut. Bull. 146, 201–205. https://doi.org/10.1016/j.marpolbul.2019.06.015.
Roy K., Akhtar A., Sachdev S., Hsu M., Lim J. Y Sarmah A. (2017). Development and characterization of novel biochar-mortar composite utilizing waste derived pyrolysis biochar. International Journal of Scientific and Engineering Research. 8, 1912-1919.
Salazar-Cruz, B.A., Zapien-Castillo, S., Hernández-Zamora, G., Rivera-Armenta, J.L. (2021). Investigation of the performance of asphalt binder modified by sargassum. Construct. Build. Mater. 271, 121876. https://doi.org/10.1016/j.conbuildmat.2020.121876
Sargablock. (2021). SargaBLOCK. https://sargablock.com.mx/productos/
Vassilev S.V., Baxter D. Andersen L y Vassileva C. (2010). An overview of the chemical composition of biomass. Fuel. 913-933. https://doi.org/10.1016/j.fuel.2009.10.022
Vigneshwaran, S.; Sundarakannan, R.; John, K.M.; Joel Johnson, R.D.; Prasath, K.A.; Ajith, S.; Arumugaprabu, V.; Uthayakumar, M (2020). Recent advancement in the natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 277, 124109. https://doi.org/10.1016/j.jclepro.2020.124109
Wang, S., Zhao, S., Uzoejinwa, B.B., Zheng, A., Wang, Q., Huang, J., Abomohra, A.E..(2020). A state-of-the-art review on dual purpose seaweeds utilization for wastewater treatment and crude bio-oil production. Energy Convers. Manag. 222, 113-253. https://doi.org/10.1016/j.enconman.2020.113253.
Weber K., y Quickr P. (2018). Properties of biochar. Fuel. 217, 240-261. https://doi.org/10.1016/j.fuel.2017.12.054
Wilkinson, S., Paul S., Ralph P., Hamdorf B., Navarro C., Laila K., Santana G. (2017) Exploring the feasibility of algae building technology in NSW. Procedia Engineering. 180, 1121-1130. https://doi.org/10.1016/j.proeng.2017.04.272
Woolf D., Amonette, J., Street-Perrott, F. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1, 56.
Zavala-Arceo A., Cruz-Arguello J., Figueroa-Torres M.Z. y Yeladaqui-Tello A. (2019). Determinación de las propiedades térmicas de un mortero modificado con sargazo como material alternativo en construcción. Revista de Ingeniería Civil, 1-9. DOI:10.35429/JCE.2019.10.3.1.9
Zhang Y., He M., Wang L., Yan J., Zhu X., Ok Y., Machtcherine V. y Tsang Daniel. (2022) Biochar as construction materials for achieving carbon neutrality. Biochar 1-25.
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2024 Métodos y Materiales