Resumen
La formación de la pared celular de las plantas involucra procesos complejos en donde los componentes que la forman varían conforme la planta se desarrolla. La estructura y composición de las paredes celulares en pastos limita la disponibilidad de los polisacáridos estructurales, principalmente como resultado de los compuestos fenólicos. El objetivo de esta revisión es proporcionar un mejor entendimiento de la síntesis de pared celular y los procesos de desarrollo y crecimiento en pastos. Se consultaron investigaciones científicas relacionadas con el proceso de feruloilación, específicamente sobre la modificación de la composición de la pared celular y su impacto en la nutrición de los rumiantes. Este proceso genera un cese en el crecimiento de la planta debido a la deposición de tejidos que forman la pared celular, lo cual reduce la degradabilidad del forraje y el contenido energético; esto da como resultado un pasto de menor digestibilidad. Estudios recientes han proporcionado estrategias culturales y genéticas para prevenir o controlar las afectaciones de la feruloilación. Mediante la modificación genética, se pueden inactivar genes involucrados en el proceso, de manera que los carbohidratos no se depositen en materiales estructurales y estén disponibles para los rumiantes. Debido a la poca investigación y los cambios que genera en las propiedades fisicoquímicas de la pared celular, su alcance en la producción de pasturas se considera limitado en este momento.
Citas
Allen, M. S. 1996. Physical constraints on voluntary intake of forages by ruminants. Journal of Animal Science, 74 (12): 3063–3075. doi: 10.2527/1996.74123063X.
Avolio, M. L. y M. D. Smith. 2013. Intra-specific responses of a dominant C4 grass to altered precipitation patterns. Plant Ecology, 214 (11): 1377–1389. doi: 10.1007/s11258-013-0258-y.
Barbehenn, R. V., Z. Chen, D. N. Karowe y A. Spickard. 2004. C3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2. Global Change Biology, 10 (9): 1565–1575. doi: 10.1111/j.1365-2486.2004.00833.x.
Barrière, Y., J. Ralph, V. Méchin, S. Guillaumie, J. H. Grabber, O. Argillier, B. Chabbert y C. Lapierre. 2004. Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants. Comptes Rendus - Biologies, 327 (9–10): 847–860. doi: 10.1016/j.crvi.2004.05.010.
Barrière, Y. y J. Thomas, D. Denoue. 2008. QTL mapping for lignin content, lignin monomeric composition, p-hydroxycinnamate content, and cell wall digestibility in the maize recombinant inbred line progeny F838 × F286. Plant Science, 175 (4): 585–595. doi: 10.1016/J.PLANTSCI.2008.06.009.
Barros-Rios, J., R. A. Malvar, H. J. G. Jung, M. Bunzel y R. Santiago. 2012. Divergent selection for ester-linked diferulates in maize pith stalk tissues. Effects on cell wall composition and degradability. Phytochemistry, 83: 43–50. doi: 10.1016/j.phytochem.2012.07.026.
Bedford, A. L. Beckett, L. Harthan, C. Wang, N. Jiang, H. Schramm, L. L. Guan, K. M. Daniels, M. D. Hanigan y R. R. White. 2020. Ruminal volatile fatty acid absorption is affected by elevated ambient temperature. Scientific Reports, 10 (1). doi: 10.1038/s41598-020-69915-x.
Capacho-Mogollón, A. E., D. F. Flórez-Delgado y J.F. Hoyos-Patiño. 2018. Biomasa y calidad nutricional de cuatro variedades de alfalfa para introducir en Pamplona, Colombia. Ciencia y Agricultura 15 (1): 61–67. doi: 10.19053/01228420.v15.n1.2018.7757.
Cardona-Iglesias, J. L., E. C. Rincon, L. D. Escobar-Pachajoa, C. Guatusmal-Gelpud, D. H. Meneses-Buitrago y L. M. Ríos-Peña. 2020. Effect of harvest age on the digestibility and energy fractioning of two forage shrubs in Colombia. Pastos y Forrajes, 43 (3): 239–246.
Casler, M. D. y H. J. G. Jung. 1999. Selection and Evaluation of Smooth Bromegrass Clones with Divergent Lignin or Etherified Ferulic Acid Concentration. Crop Science, 39 (6): 1866–1873. doi: 10.2135/CROPSCI1999.3961866X.
Cherney, D. J. R. y J. H. Cherney. 2005. Forage Yield and Quality of Temperate Perennial Grasses as Influenced by Stubble Height. Forage & Grazinglands, 3 (1): 1–8. doi: 10.1094/fg-2005-0215-01-rs.
Chuncho, G., C. Chuncho y Z. Aguirre. 2019. Anatomía y morfología vegetal. Serie: Estudios de Biodiversidad 6. Universidad Nacional de Loja. pp. 134. Consultado 23 nov. 2022. Disponible en https://unl.edu.ec/sites/default/files/archivo/2019-12/ANATOMÍA Y MORFOLOGÍA VEGETAL.pdf.
Cogan, N. O. I., K. F. Smith, T. Yamada, M. G. Francki, A. C. Vecchies, E. S. Jones, G. C. Spangenberg y J. W. Forster. 2005. QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.). Theoretical and Applied Genetics, 110 (2): 364–380. doi: 10.1007/S00122-004-1848-9/FIGURES/4.
Contreras, J. L. P., M. A. Z. Matos, C. Erika Felipe, A. G. F. Cordero y Y. R. Espinoza. 2019. Degradabilidad ruminal de forrajes y residuos de cosecha en bovinos Brown Swiss. Revista de Investigaciones Veterinarias del Perú, 30 (3): 1117–1128. doi: 10.15381/rivep.v30i3.16601.
Coomey, J. H., R. Sibout y S. P. Hazen. 2020. Grass secondary cell walls, Brachypodium distachyon as a model for discovery. New Phytologist, 227 (6): 1649-1667. doi: 10.1111/nph.16603.
Courtial, A., V. Méchin, M. Reymond, J. Grima-Pettenati y Y. Barrière. 2014. Colocalizations between several QTLS for cell wall degradability and composition in the F288 × F271 early maize ril progeny raise the question of the nature of the possible underlying determinants and breeding targets for biofuel capacity. Bioenergy Research, 7 (1): 142–156. doi: 10.1007/S12155-013-9358-8/FIGURES/2.
Cruz-Calvo, M. y J. Sánchez-González. 2000. La fibra en la alimentación del ganado lechero. Nutrición Animal Tropical, 6 (1): 39–74.
D’Auria, J. C. 2006. Acyltransferases in plants: a good time to be BAHD. Current Opinion in Plant Biology, 9 (3): 331-340. doi: 10.1016/j.pbi.2006.03.016.
Decruyenaere, V., A. Buldgen y D. Stilmant. 2009. Factors affecting intake by grazing ruminants and related quantification methods: a review. Biotechnology, Agronomy and Society and Environment, 13 (4).
de O. Buanafina, M. M., M. F. Buanafina, S. Dalton, P. Morris, M. Kowalski, M. K. Yadav y L. Capper. 2020. Probing the role of cell wall feruloylation during maize development by differential expression of an apoplast targeted fungal ferulic acid esterase. PLoS ONE, 15 (10): e0240369. doi: 10.1371/journal.pone.0240369.
de O. Buanafina, M. M. y P. Morris. 2022. The Impact of Cell Wall Feruloylation on Plant Growth, Responses to Environmental Stress, Plant Pathogens and Cell Wall Degradability. Agronomy, 12 (8): 1847. doi: 10.3390/AGRONOMY12081847.
Fry, S. C., S. C. Willis y A. E. J. Paterson. 2000. Intraprotoplasmic and wall-localised formation of arabinoxylan-bound diferulates and larger ferulate coupling-products in maize cell-suspension cultures. Planta, 211 (5): 679–692. doi: 10.1007/s004250000330.
Garay, J. R., B. Estrada, J. C. Martínez, S. J. Cancino, H. P. Guevara, M. V. Acosta y E. G. Cienfuegos. 2022. Rendimiento y digestibilidad de forraje de cultivares de Urochloa spp. a tres edades de rebrote en épocas de lluvias y seca. Revista Mexicana de Ciencias Pecuarias, 13 (1): 297–310. doi: 10.22319/rmcp.v13i1.5265.
Garcia, S. C., W. J. Fulkerson y S. U. Brookes. 2008. Dry matter production, nutritive value and efficiency of nutrient utilization of a complementary forage rotation compared to a grass pasture system. Grass and Forage Science, 63 (3): 284–300. doi: 10.1111/j.1365-2494.2008.00636.x.
Harris, P. J. 2006. Primary and secondary plant cell walls: A comparative overview. New Zealand Journal of Forestry Science, 36 (1): 36-53.
Harris, P. J. y R. D. Hartley. 1980. Phenolic constituents of the cell walls of monocotyledons. Biochemical Systematics and Ecology, 8 (2): 153–160. doi: 10.1016/0305-1978(80)90008-3.
Jacquet, G., B. Pollet, C. Lapierre, F. Mhamdi y C. Rolando. 1995. New Ether-Linked Ferulic Acid-Coniferyl Alcohol Dimers Identified in Grass Straws. Journal of Agricultural and Food Chemistry, 43 (10): 2746–2751. doi: 10.1021/jf00058a037.
Jung, H. G. y M. S. Allen. 1995. Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. Journal of Animal Science, 73 (9): 2774–2790. doi: 10.2527/1995.7392774x.
Jung, H. G., D. R. Mertens y R. L. Phillips. 2011. Effect of reduced ferulate-mediated lignin/arabinoxylan cross-linking in corn silage on feed intake, digestibility, and milk production. Journal of Dairy Science, 94 (10): 5124–5137. doi: 10.3168/jds.2011-4495.
Jung, H. G. y R. L. Phillips. 2010. Putative seedling ferulate ester (sfe) maize mutant: Morphology, biomass yield, and stover cell wall composition and rumen degradability. Crop Science, 50 (1): 403–418. doi: 10.2135/cropsci2009.04.0191.
Li, A., Y. Yang, S. Qin, S. Lv, T. Jin, K. Li, Z. Han y Y. Li. 2021. Microbiome analysis reveals gut microbiota alteration of early-weaned Yimeng black goats with the effect of milk replacer and age. Microbial Cell Factories, 20 (1). doi: 10.1186/s12934-021-01568-5.
López-Malvar, A., A. Butrón, L. F. Samayoa, D. J. Figueroa-Garrido, R. A. Malvar y R. Santiago. 2019. Genome-wide association analysis for maize stem Cell Wall-bound Hydroxycinnamates. BMC Plant Biology, 19 (1): 1–12. doi: 10.1186/s12870-019-2135-x.
MacAdam, J. W. y J. H. Grabber. 2002. Relationship of growth cessation with the formation of diferulate cross-links and p-coumaroylated lignins in tall fescue leaf blades. Planta, 215 (5): 785–793. doi: 10.1007/s00425-002-0812-7.
Marita, J. M., W. Vermerris, J. Ralph y R. D. Hatfield. 2003. Variations in the cell wall composition of maize brown midrib mutants. Journal of Agricultural and Food Chemistry, 51 (5): 1313–1321. doi: 10.1021/jf0260592.
Messana, J. D., A. L. E. G. F. Carvalho, A. F. Ribeiro, G. Fiorentini, P. S. Castagnino, Y. T. Granja-Salcedo, A. V. Pires y T. T. Berchielli. 2016. Effects of different sources of forage in high-concentrate diets on fermentation parameters, ruminal biohydrogenation and microbiota in Nellore feedlot steers. Journal of Agricultural Science, 154 (5): 928–941. doi: 10.1017/S0021859616000204.
Mitchell, R. A. C., P. Dupree y P. R. Shewry. 2007. A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiology, 144 (1): 43–53. doi: 10.1104/pp.106.094995.
Mizrahi, I., R. J. Wallace y S. Moraïs. 2021. The rumen microbiome: balancing food security and environmental impacts. Nature Reviews Microbiology, 19: 553–566 doi: 10.1038/s41579-021-00543-6.
Munekata, N., T. Tsuyama, I. Kamei, Y. Kijidani y K. Takabe. 2022. Deposition patterns of feruloylarabinoxylan during cell wall formation in moso bamboo. Planta, 256 (3): 1–13. doi: 10.1007/S00425-022-03970-8.
Myton, K. E. y S. C. Fry. 1994. Intraprotoplasmic feruloylation of arabinoxylans in Festuca arundinacea cell cultures. Planta, 193 (3): 326–330. doi: 10.1007/BF00201809.
Núñez-Arroyo, J. M., J. P. Jiménez-Castro, C. M. Tobía-Rivero, L. M. Arias-Gamboa, E. Jiménez-Alfaro y J. E. Padilla-Fallas. 2022. Efecto de la edad de rebrote y época del año sobre la biomasa y calidad bromatológica en gramíneas utilizadas en tres zonas agroclimáticas de Costa Rica (I PARTE). Nutrición Animal Tropical 16(1):31–52. doi: 10.15517/nat.v16i1.50370.
Oba, M., J. L. Mewis y Z. Zhining. 2015. Effects of ruminal doses of sucrose, lactose, and corn starch on ruminal fermentation and expression of genes in ruminal epithelial cells. Journal of Dairy Science, 98 (1): 586–594. doi: 10.3168/jds.2014-8697.
Oliveira, D. M., T. R. Mota, F. V. Salatta, R. C. Sinzker, R. Končitíková, D. Kopečný, R. Simister, M. Silva, G. Goeminne, K. Morreel, J. Rencoret, A. Gutiérrez, T. Tryfona, R. Marchiosi, P. Dupree, J. C. del Río, W. Boerjan, S. J. McQueen-Mason, L. D. Gomez, O. Ferrarese-Filho y W. D. dos Santos. 2020a. Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize. Plant, Cell and Environment, 43 (9): 2172–2191. doi: 10.1111/pce.13805.
Oliveira, D. M., T. R. Mota, F. V. Salatta, G. H. G. de Almeida, V. G. A. Olher, M. A. S. Oliveira, R. Marchiosi, O. Ferrarese-Filho y W. D. dos Santos. 2020b. Feruloyl esterase activity and its role in regulating the feruloylation of maize cell walls. Plant Physiology and Biochemistry, 156: 49–54. doi: 10.1016/j.plaphy.2020.08.046.
Owens, F. N. y M. Basalan. 2016. Ruminal fermentation. En: Millen, D., M. Beni Arrigoni, R. Lauritano Pacheco, editores. Rumenology. Springer Cham. p. 63-102. doi: 10.1007/978-3-319-30533-2_3.
Ralph, J., J. H. Grabber y R. D. Hatfield. 1995. Lignin-ferulate cross-links in grasses: active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydrate Research, 275 (1): 167–178. doi: 10.1016/0008-6215(95)00237-N.
Rastall, R. A., M. Diez-Municio, S. D. Forssten, B. Hamaker, A. Meynier, F. J. Moreno, F. Respondek, B. Stah, K. Venema y M. Wiese. 2022. Structure and function of non- digestible carbohydrates in the gut microbiome. Beneficial Microbes, 13 (2): 95–168. doi: 10.3920/bm2021.0090.
Rautengarten, C., B. Ebert, M. Ouellet, M. Nafisi, E. E. K. Baidoo, P. Benke, M. Stranne, A. Mukhopadhyay, J. D. Keasling, Y. Sakuragi y H. V. Scheller. 2012. Arabidopsis Deficient in Cutin Ferulate encodes a transferase required for feruloylation of ω-hydroxy fatty acids in cutin polyester. Plant Physiology, 158 (2): 654–665. doi: 10.1104/pp.111.187187.
Rosales, R. B. y S. S. Pinzón. 2005. Limitaciones físicas y químicas de la digestibilidad de pastos tropicales y estrategias para aumentarla. Ciencia & Tecnología Agropecuaria, 6 (1): 69–82. doi: 10.21930/rcta.vol6_num1_art:39.
Schaub, S., R. Finger, F. Leiber, S. Probst, M. Kreuzer, A. Weigelt, N. Buchmann y M. Scherer-Lorenzen. 2020. Plant diversity effects on forage quality, yield and revenues of semi-natural grasslands. Nature Communications 11 (1): 1–11. doi: 10.1038/s41467-020-14541-4.
Sena, K. L., B. Goff, D. Davis y S. R. Smith. 2018. Switchgrass Growth and Forage Quality Trends Provide Insight for Management. Crop, Forage & Turfgrass Management 4 (1) :1–8. doi: 10.2134/cftm2017.08.0053.
Shah, S.S., L. Shi, Z. Li, G. Ren, B. Zhou y P. Qin. 2020. Yield, agronomic and forage quality traits of different quinoa (Chenopodium quinoa Willd.) Genotypes in Northeast China. Agronomy 10 (12): 1908. doi: 10.3390/agronomy10121908.
Shalloo, L., M. O. Donovan, L. Leso, J. Werner, E. Ruelle, A. Geoghegan, L. Delaby y N. O. Leary. 2018. Review: Grass-based dairy systems, data and precision technologies. Animal, 12 (s2): s262–s271. doi: 10.1017/S175173111800246X.
Simeão, R. M., M. D. V. Resende, R. S. Alves, M. Pessoa-Filho, A. L. S. Azevedo, C. S. Jones, J. F. Pereira y J. C. Machado. 2021. Genomic Selection in Tropical Forage Grasses: Current Status and Future Applications. Frontiers in Plant Science, (12): 665195. doi: 10.3389/fpls.2021.665195.
de Souza, W. R., P. K. Martins, J. Freeman, T. K. Pellny, L. V. Michaelson, B. L. Sampaio, F. Vinecky, A. P. Ribeiro, B. A. D. B. da Cunha, A. K. Kobayashi, P. A. de Oliveira, R. B. Campanha, T., F. Pacheco, D. C. I. Martarello, R. Marchiosi, O. Ferrarese-Filho, W. D. dos Santos, R. Tramontina, F. M. Squina, D. C. Centeno, M. Gaspar, M. R. Braga, M. A. S. Tiné, J. Ralph, R. A. C. Mitchell y H. B. C. Molinari. 2018. Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility. New Phytologist, 218 (1): 81–93. doi: 10.1111/nph.14970.
Spadoni Andreani, E., M. Li, J. Ronholm y S. Karboune. 2021. Feruloylation of polysaccharides from cranberry and characterization of their prebiotic properties. Food Bioscience, 42: 101071. doi: 10.1016/j.fbio.2021.101071.
Tamayo-Cabezas, J. y S. Karboune. 2020. Optimizing Immobilization and Stabilization of Feruloyl Esterase from Humicola Insolens and its Application for the Feruloylation of Oligosaccharides. Process Biochemistry, 98: 11–20. doi: 10.1016/j.procbio.2020.07.009.
Tozer, P. R., F. Bargo y L. D. Muller. 2003. Economic analyses of feeding systems combining pasture and total mixed ration. Journal of Dairy Science, 86 (3): 808–818. doi: 10.3168/jds.S0022-0302(03)73663-7.
Villalobos-Villalobos, L. A., J. Arce y R. WingChing-Jones. 2013. Producción de biomasa y costos de producción de pastos Estrella Africana (Cynodon nlemfuensis), Kikuyo (Kikuyuocloa clandestina) y Ryegrass Perenne (Lolium perenne) en lecherías de Costa Rica. Agronomía Costarricense, 37 (2): 91–103. doi: 10.15517/rac.v37i2.12765.
Waldron, K. W. y C. T. Brett. 2007. The Role of Polymer Cross-Linking in Intercellular Adhesion. En: Roberts, J. A., Z. Gonzalez-Carranza, editores. Anual Plant Reviwes Volume 25: Plant Cell Separation and Adhesion. Blackwell Publishing Ltd. p. 183–204. doi: 10.1002/9780470988824.ch9.
Wan, J., M. He, Q. Hou, L. Zou, Y. Yang, Y. Wei y X. Chen. 2021. Cell wall associated immunity in plants. Stress Biology, 1 (1): 1–15. doi: 10.1007/s44154-021-00003-4.
Wang, B., M. Ma, H. Lu, Q. Meng, G. Li y X. Yang. 2015. Photosynthesis, sucrose metabolism, and starch accumulation in two NILs of winter wheat. Photosynthesis Research, 126 (2–3): 363–373. doi: 10.1007/s11120-015-0126-9.
Wang, H., K. Li, X. Hu, Z. Liu, Y. Wu y C. Huang. 2016. Genome-wide association analysis of forage quality in maize mature stalk. BMC Plant Biology, 16 (1): 1–12. doi: 10.1186/s12870-016-0919-9 .
Wang, L., G. Zhang, Y. Li y Y. Zhang. 2020. Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. Animals, 10 (2): 223. doi: 10.3390/ani10020223.
Welch, C. B., J. M. Lourenco, D. B. Davis, T. R. Krause, M. N. Carmichael, M. J. Rothrock, T. D. Pringle y T. R. Callaway. 2020. The impact of feed efficiency selection on the ruminal, cecal, and fecal microbiomes of Angus steers from a commercial feedlot. Journal of Animal Science, 98 (7). doi: 10.1093/jas/skaa230.
Williamson, G., P. A. Kroon y C. B. Faulds. 1998. Hairy plant polysaccharides: A close shave with microbial esterases. s.l., Microbiology, 144 (8): 2011–2023 doi: 10.1099/00221287-144-8-2011.
Yohe, T. T., H. Schramm, R. R. White, M. D. Hanigan, C. L. M. Parsons, H. L. M. Tucker, B. D. Enger, N. R. Hardy y K. M. Daniels. 2019. Form of calf diet and the rumen. II: Impact on volatile fatty acid absorption. Journal of Dairy Science, 102 (9): 8502–8512. doi: 10.3168/jds.2019-16450.
Zhang, Y., D. Legland, F. E. I. Hage, M. F. Devaux, F. Guillon, M. Reymond y V. Méchin. 2019. Changes in cell walls lignification, feruloylation and p-coumaroylation throughout maize internode development. PLoS ONE, 14 (7): e0219923. doi: 10.1371/journal.pone.0219923.
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.