Población y Salud en Mesoamérica ISSN electrónico: 1659-0201

OAI: https://revistas.ucr.ac.cr/index.php/psm/oai
Comparative study of cytogenetic biomonitoring in veterinary personnel occupationally exposed to ionizing radiation by cytokinesis-block micronucleus assay
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))
XML (Español (España))

Keywords

micronucleus assay
ionizing radiation
genotoxicity test
occupational exposure
ensayo de micronúcleos
radiación ionizante
pruebas de genotoxicidad
exposición ocupacional

How to Cite

Chaves-Campos, F. A., Vargas Gamboa, A., Ramírez Mayorga, V., Mora Rodríguez, P., Abarca Ramírez, M., & Valle Bourrouet, L. (2022). Comparative study of cytogenetic biomonitoring in veterinary personnel occupationally exposed to ionizing radiation by cytokinesis-block micronucleus assay. Población Y Salud En Mesoamérica, 20(1). https://doi.org/10.15517/psm.v20i1.48074

Abstract

Introduction: Ionizing radiation (RI) can induce the formation of micronuclei (MN). The formation of MN is used as a biomarker of radiation-induced genetic damage. Objective: assess DNA damage resulting from occupational exposure to RI in veterinary personnel. Methodology: the cytokinesis-block micronucleus assay (MNBC) was used to compare the observed frequency of MN in 40 individuals occupationally exposed to ionizing radiation with respect to a control group of 32 participants, both groups belonging to veterinary personnel. In addition, demographic, lifestyle and occupational variables that could influence the formation of MN were recorded. Results: univariate analysis did not show significant differences in the frequency of MN between the study groups (p=0.118). Using multivariate analysis, it was found that approximately 27% (adjusted R2= 0.269) of the variability in the frequency of MN can be explained by the joint influence of age, sex and the number of radiographic images performed by the participant. Age is the variable with the greatest relative importance (β = 0.504), followed by the sex of the participant (β = -0.316) and the number of X-rays performed per day (β = 0.214). Conclusions: the frequency of MN tends to increase in women, as the participant's age increases and as the number of radiographic images performed increases.

https://doi.org/10.15517/psm.v20i1.48074
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))
XML (Español (España))

References

Antonin, W. y Neumann, H. (2016). Chromosome condensation and decondensation during mitosis. Current Opinion in Cell Biology, 40, 15–22. https://doi.org/10.1016/j.ceb.2016.01.013

Averbeck, D. (2009). Does scientific evidence support a change from the LNT model for low-dose radiation risk extrapolation?. Health Physics, 97(5), 493–504.

Baeyens, A., Swanson, R., Herd, O., Ainsbury, E., Mabhengu, T., Willem, P., Thierens, H., Slabbert, J. P. y Vral, A. (2011). A semi-automated micronucleus-centromere assay to assess low-dose radiation exposure in human lymphocytes. International Journal of Radiation Biology, 87(9), 923–931. https://doi.org/10.3109/09553002.2011.577508

Camacho, A. (2017). Propuesta para el fortalecimiento del servicio de radiología del Hospital de Especies Menores y Silvestres de la Universidad Nacional de Costa Rica, a partir del diagnóstico de los procedimientos empleados para los diferentes estudios, durante el período 2016-2017 [Tesis de licenciatura]. Universidad de Costa Rica, San José, Costa Rica.

Cannan, W. y Pederson, D. (2016). Mechanisms and Consequences of Double-strand DNA Break Formation in Chromatin. J Cell Physiol, 231(1), 3–14. https://doi.org/10.1002/jcp.25048

Cardarelli, J. y Ulsh, B. (2018). It is time to move beyond the linear no-threshold theory for low-dose radiation protection. Dose-Response, 16(3). https://doi.org/10.1177/1559325818779651

Catalán, J., Surrallés, J., Falck, G., Autio, K. y Norppa, H. (2000). Segregation of sex chromosomes in human lymphocytes. Mutagenesis, 15(3), 251–255. https://doi.org/10.1093/mutage/15.3.251

Chang, D., Foster, L., Das, I., Mendonca, M. y Dynlacht, J. (2021). Basic Radiotherapy Physics and Biology. Springer Nature. https://doi.org/https://doi.org/10.1007/978-3-030-61899-5

Duncan, J., Lieber, M., Adachi, N. y Wahl, R. (2018). Radiation dose does matter: Mechanistic insights into DNA damage and repair support the linear no-threshold model of low-dose radiation health risks. Journal of Nuclear Medicine, 59(7), 1014–1016. https://doi.org/10.2967/jnumed.118.210252

Durante, M. y Formenti, S. (2018). Radiation-induced chromosomal aberrations and immunotherapy: Micronuclei, cytosolic DNA, and interferon-production pathway. Frontiers in Oncology, 8, 192–202. https://doi.org/10.3389/fonc.2018.00192

El-Sayed, T., Patel, A., Cho, J., Kelly, J., Ludwinski, F., Saha, P., Lyons, O., Smith, A. y Modarai, B. (2017). Radiation-Induced DNA Damage in Operators Performing Endovascular Aortic Repair. Circulation, 136(25), 2406–2416. https://doi.org/10.1161/CIRCULATIONAHA.117.029550

Falck, G. (2014). Micronuclei in Human Peripheral Lymphocytes – Mechanistic Origin and Use as a Biomarker of Genotoxic Effects in Occupational Exposure [Tesis doctoral]. Universidad de Helsinki, Finlandia.

Fenech, M. y Bonassi, S. (2011). The effect of age, gender, diet and lifestyle on DNA damage measured using micronucleus frequency in human peripheral blood lymphocytes. Mutagenesis, 26(1), 43–49. https://doi.org/10.1093/mutage/geq050

Fenech, M. y Morley, A. (1985). Measurement of micronuclei in lymphocytes. Mutation Research/Environmental Mutagenesis and Related Subjects, 147(1), 29–36. https://doi.org/10.1016/0165-1161(85)90015-9

Ferraz, G., Costa, A., Cerqueira, E. y Meireles, J. (2016). Effects of age on the frequency of micronuclei and degenerative nuclear abnormalities. Revista Brasileira de Geriatria e Gerontologia, 19(4), 627–634. https://doi.org/10.1590/1809-98232016019.150155

Giaccia, E., Hall, J. y Amato, J. (2012). Radiobiology for the radiologist. Lippincott Williams y Williams.

Guo, X., Ni, J., Liang, Z., Xue, J., Fenech, M. y Wang, X. (2019). The molecular origins and pathophysiological consequences of micronuclei: New insights into an age-old problem. Mutation Research - Reviews in Mutation Research, 779, 1-35. https://doi.org/10.1016/j.mrrev.2018.11.001

Huda, W. (2016). Review of radiologic physics. Wolters Kluwer.

Joiner, M. y van der Kogel, A. (2019). Basic Clinical Radiobiology. CRC Press.

Kang, C., Yun, H., Kim, H. y Kim, C. (2016). Strong correlation among three biodosimetry techniques following exposures to ionizing radiation. Genome Integrity, 7(11). https://doi.org/10.4103/2041-9414.197168

Kavanagh, J., Redmond, K., Schettino, G. y Prise, K. (2013). DSB Repair - A radiation perspective. Antioxidants y Redox Signaling, 18, 2458–2472. https://doi.org/10.1089/ars.2012.5151

Khoronenkova, S. y Dianov, G. (2015). ATM prevents DSB formation by coordinating SSB repair and cell cycle progression. Proceedings of the National Academy of Sciences, 112(13), 3997-4002. https://doi.org/10.1073/pnas.1416031112

Luzhna, L., Kathiria, P. y Kovalchuk, O. (2013). Micronuclei in genotoxicity assessment: From genetics to epigenetics and beyond. Frontiers in Genetics, 4. https://doi.org/10.3389/fgene.2013.00131

Maher, C. y Wilson, R. (2012). Chromothripsis and human disease: Piecing together the shattering process. Cell, 148(1), 59-71. https://doi.org/10.1016/j.cell.2012.01.006

Milosević-Djordjević, O., Grujiciĉ, D., Vaskoviĉ, Z. y Marinkoviĉ, D. (2010). High micronucleus frequency in peripheral blood lymphocytes of untreated cancer patients irrespective of gender, smoking and cancer sites. The Tohoku Journal of Experimental Medicine, 220(2), 115–120. https://doi.org/10.1620/tjem.220.115

Morishita, M., Muramatsu, T., Suto, Y., Hirai, M., Konishi, T., Hayashi, S., Shigemizu, D., Tsunoda, T., Moriyama, K. y Inazawa, J. (2016). Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system. Oncotarget, 7(9), 10182–10192. https://doi.org/10.18632/oncotarget.7186

Narain, A., Hijji, F., Yom, K., Kudaravalli, K., Haws, B. y Singh, K. (2017). Radiation exposure and reduction in the operating room: Perspectives and future directions in spine surgery. World Journal of Orthopedics, 8(7), 524-530. https://doi.org/10.5312/wjo.v8.i7.524

Norppa, H. y Falck, G. (2003). What do human micronuclei contain? Mutagenesis, 18(3), 221–233. https://doi.org/10.1093/mutage/18.3.221

Organismo Internacional de Energía Atómica. (2014). Dosimetría citogenética: Aplicaciones en materia de preparación y respuesta a las emergencias radiológicas. Centro de Respuesta a Incidentes y Emergencias del OIEA. https://www-pub.iaea.org/MTCD/Publications/PDF/EPR_Biodosimetry_S_web.pdf

Pajic, J., Jovicic, D. y Milovanovic, A. (2017). Micronuclei as a marker for medical screening of subjects continuously occupationally exposed to low doses of ionizing radiation. Biomarkers, 22(5), 439–445. https://doi.org/10.1080/1354750X.2016.1217934

Qian, Q., Cao, X., Shen, F. y Wang, Q. (2016). Effects of ionising radiation on micronucleus formation and chromosomal aberrations in Chinese radiation workers. Radiation Protection Dosimetry, 168(2), 197–203. https://doi.org/10.1093/rpd/ncv290

Rastkhah, E., Zakeri, F., Ghoranneviss, M., Rajabpour, M., Farshidpour, M., Mianji, F. y Bayat, M. (2016). The cytokinesis-blocked micronucleus assay: dose–response calibration curve, background frequency in the population and dose estimation. Radiation and Environmental Biophysics, 55, 41–51. https://doi.org/10.1007/s00411-015-0624-3

Ryu, T., Kim, J. y Kim, J. (2016). Chromosomal aberrations in human peripheral blood lymphocytes after exposure to ionizing radiation. Genome Integrity, 7(1), 5. https://doi.org/10.4103/2041-9414.197172

Sari-Minodier, I., Orsière, T., Auquier, P., Martin, F. y Botta, A. (2007). Cytogenetic monitoring by use of the micronucleus assay among hospital workers exposed to low doses of ionizing radiation. Mutation Research, 629(2), 111–121. https://doi.org/10.1016/j.mrgentox.2007.01.009

Schipler, A. y Iliakis, G. (2013). DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Research, 41(16), 7589–7605. https://doi.org/10.1093/nar/gkt556

Shakeri, M., Zakeri, F., Changizi, V., Rajabpour, M. y Farshidpour, M. (2017). A cytogenetic biomonitoring of industrial radiographers occupationally exposed to low levels of ionizing radiation by using CBMN assay. Radiation Protection Dosimetry, 175(2), 246–251. https://doi.org/10.1093/rpd/ncw292

Siama, Z., Zosang-zuali, M., Vanlalruati, A., Jagetia, G., Pau, K. y Kumar, N. (2019). Chronic low dose exposure of hospital workers to ionizing radiation leads to increased micronuclei frequency and reduced antioxidants in their peripheral blood lymphocytes. International Journal of Radiation Biology, 95(6), 697–709. https://doi.org/10.1080/09553002.2019.1571255

Sierra, C. (2011). Evaluación del efecto genotóxico de la Radiación Ionizante en médicos ortopedistas expuestos laboralmente, en cuatro instituciones de salud en Bogotá, Colombia 2011 [Tesis de maestría]. Universidad de Colombia, Bogotá, Colombia.

Soltanpour, T., Zakeri, F., Changizi, V., Rajabpour, M. y Farshidpour, M. (2017). Low levels of ionizing radiation exposure and cytogenetic effects in radiopharmacists. Medical Communication Biosci. Biotech. Res. Comm, 10(1), 56–62. http://dx.doi.org/10.21786/bbrc/10.1/9

Sommer, S., Buraczewska, I. y Kruszewski, M. (2020). Micronucleus assay: The state of art, and future directions. International Journal of Molecular Sciences, 21(4). https://doi.org/10.3390/ijms21041534

Terzic, S., Milovanovic, A., Dotlic, J., Rakic, B. y Terzic, M. (2015). New models for prediction of micronuclei formation in nuclear medicine department workers. Journal of Occupational Medicine and Toxicology, 10(25). https://doi.org/10.1186/s12995-015-0066-5

Thierens, H. y Vral, A. (2009). The micronucleus assay in radiation accidents. Annali Dell’Istituto Superiore Di Sanita, 45(3), 260-4.

Torres-Bugarín, O., Zavala-Cerna, M. G., Nava, A., Flores-García, A. y Ramos-Ibarra, M. L. (2014). Potential uses, limitations, and basic procedures of micronuclei and nuclear abnormalities in buccal cells. Disease Markers, 2014. https://doi.org/10.1155/2014/956835

Vaiserman, A. M. (2010). Radiation hormesis: Historical perspective and implications for low-dose cancer risk assessment. Dose-Response, 8(2), 172–191. https://doi.org/10.2203/dose-response.09-037.

Wolff, H., Hennies, S., Herrmann, M., Rave-Fränk, M., Eickelmann, D., Virsik, P., Jung, K., Schirmer, M., Ghadimi, M., Hess, C., Hermann, R. y Christiansen, H. (2011). Comparison of the micronucleus and chromosome aberration techniques for the documentation of cytogenetic damage in radiochemotherapy-treated patients with rectal cancer. Strahlentherapie Und Onkologie, 187(1), 52–58. https://doi.org/10.1007/s00066-010-2163-9

Yamada, R., Saimyo, Y., Tanaka, K., Hattori, A., Umeda, Y., Kuroda, N., Tsuboi, J., Hamada, Y. y Takei, Y. (2020). Usefulness of an additional lead shielding device in reducing occupational radiation exposure during interventional endoscopic procedures: An observational study. Medicine, 99(34), e21831. https://doi.org/10.1097/MD.0000000000021831

Zakeri, F., Farshidpour, M. y Rajabpour, M. (2017). Occupational radiation exposure and genetic polymorphismsin DNA repair genes. Radioprotection, 52(4), 214–249. https://doi.org/10.1051/radiopro/2017025

Zakeri, F. y Hirobe, T. (2010). A cytogenetic approach to the effects of low levels of ionizing radiations on occupationally exposed individuals. European Journal of Radiology, 73(1), 191–195. https://doi.org/10.1016/j.ejrad.2008.10.015

Comments

Downloads

Download data is not yet available.