Abstract
Introduction: The cytogenetics laboratory of the Health Research Institute (INISA) of the University of Costa Rica established a Biological Dosimetry Service in January 2020 using cytogenetic biomarkers of exposure to ionizing radiation. It is the first of its kind in the Central American region. Objective: establish a biological dosimetry service for Costa Rica, developing a dose-effect calibration curve for gamma rays. Methodology: to carry out the calibration curve, peripheral blood samples from two volunteers, one female and the other male, were irradiated in vitro with gamma rays, at 11 dose points in the range of 0 to 5 Gy. Blood was cultured according to international protocols for 48 hours and induced aberrations were recorded. The Dose Estimate V5.2 and R version 4.03 programs were used to calculate the coefficients of the calibration curve that correlates the frequency of dicentric chromosomes with the dose. Results: the coefficients of the curve are α: 0.02737 ± 0.00658, ß: 0.05938 ± 0.00450 and C: 0.00129 ± 0.00084. These coefficients have values similar to those reported internationally. The curve was validated by calculating two unknown doses, in the first unknown case the delivered dose was 1.5 Gy and the estimated dose was 1.47 Gy and in the second case the delivered dose was 4 Gy and the estimated dose was 3.616 Gy. for both cases there are no statistically significant differences between the delivered and estimated doses. Conclusions: the Biological Dosimetry Service of the INISA can estimate absorbed dose in persons suspected of overexposure to gamma rays in occupationally exposed personnel or persons involved in a radiological accident.
References
Ainsbury, E.A. y Lloyd, D.C. (2010). Dose estimation software for radiation biodosimetry, Hlth Phys. 98, 290–295.
Alsbeih, G., Al-Hadyan, K., Al-Harbi, N., Bin Judia, S. y Moftah, B. (2020). Establishing a Reference Dose–Response Calibration Curve for Dicentric Chromosome Aberrations to Assess Accidental Radiation Exposure in Saudi Arabia. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.599194
Baeyens, A., Swanson, R., Herd, O., Ainsbury, E., Mabhengu, T., Willem, P., Thierens, H., Slabbert, J. P., y Vral, A. (2011). A semi-automated micronucleus-centromere assay to assess low-dose radiation exposure in human lymphocytes. International Journal of Radiation Biology. 87(9), 923–931. https://doi.org/10.3109/09553002.2011.577508
Cannan, W. J. y Pederson, D. S. (2016). Mechanisms and Consequences of Double-strand DNA Break Formation in Chromatin. J Cell Physiol, 231(1), 3–14. https://doi.org/0.1002/jcp.25048. Autho
Chebotarev, A., Selezneva, T. y Platonova, V. (1978). Modified method of differential staining of sister chromatids. Biull Eksp Biol Med, 85(2): 242–243.
García, O., Di Giorgio, M., Radl, A., Taja, M. R., Sapienza, C. E., Deminge, M., Fernandez, J., Stuck, M., Valdivia, P., Lalamadrid, A., González, J., Romero, I., Mandina, T., Guerrero-Carbajal, C., Arce-Maldonado, C., Cortina, G., Espinoza, M., Martínez-Lopez, W. y Di Tomasso, M. (2016). The Latin American Biological Dosimetry Network (LBDNet). Radiation Protection Dosimetry, 171(1): 64–69. https://doi.org/https://doi.org/10.1093/rpd/ncw209
García, O., Rada-Tarifa, A., Lafuente-Alvarez, E., González-Meza, J., Mandina, T., Muñoz-Velastegui, G., Astudillo-Silva, Y., Monjagata, N., Aguilar-Cornel, S., y Falcón de Vargas, A. (2019). The BioDoseNet image repository used as a training tool for the dicentric assay. International Journal of Radiation Biology, 95(12), 1659–1667. https://doi.org/https://doi.org/10.1080/09553002.2019.1665211
Giaccia, E., Hall, J. y Amato, J. (2012). Radiobiology for the radiologist (7th ed.). Lippincott Williams & Williams.
International Atomic Energy Agency. (1988). The Radiological Accident in Goiânia. https://www-pub.iaea.org/mtcd/publications/pdf/pub815_web.pdf
International Atomic Energy Agency. (2004). The radiological accident in Cochabamba. https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1199_web.pdf
International Atomic Energy Agency. (2009). The radiological accident in Nueva Aldea. https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1389_web.pdf
International Organization for Standardization. (2014). ISO 19238:2014 Radiological protection — Performance criteria for service laboratories performing biological dosimetry by cytogenetics.
Lamadrid, A., Romero, I., González, J. y García, O. (2014). Dosimetría citogenética para altas dosis de radiación mediante condensación prematura de cromosomas. Anales de La Academia de Ciencias de Cuba., 4(2), 1–8.
Lavelle, C. y Foray, N. (2014). Chromatin structure and radiation-induced DNA damage: From structural biology to radiobiology. International Journal of Biochemistry and Cell Biology, 49, 84–97. https://doi.org/10.1016/j.biocel.2014.01.012
Lee, Y., Woo Jin, Y., Wilkins, R. y Jang, S. (2019). Validation of the dicentric chromosome assay for radiation biological dosimetry in South Korea. Journal of Radiation Research, 60(5), 555–563. https://doi.org/10.1093/jrr/rrz039
Milosević-Djordjević, O., Grujiciĉ, D., Vaskoviĉ, Z. y Marinkoviĉ, D. (2010). High micronucleus frequency in peripheral blood lymphocytes of untreated cancer patients irrespective of gender, smoking and cancer sites. The Tohoku Journal of Experimental Medicine, 220(2), 115–120. https://doi.org/10.1620/tjem.220.115
Organismo Internacional de Energía Atómica. (2014). Dosimetría citogenética: Aplicaciones en materia de preparación y respuesta a las emergencias radiológicas. Organismo Internacional de Energía Atómica.
Organismo Internacional de Energía Atómica. (2016). Protección radiológica y seguridad de las fuentes de radiación: Normas básicas internacionales de seguridad. In Organismo Internacional de Energía Atómica. Organismo Internacional de Energía Atómica.
Özdal, A., Erselcan, T., Özdemir, Ö., Silov, G., Erdoğan, Z. y Turhal, Ö. (2016). Micronucleus frequencies in groups receiving external or internal radiation. In Indian Journal of Nuclear Medicine,31(3), 179. https://doi.org/10.4103/0972-3919.183621
Pyatkin, E., Nugis, V. y Chirkov, A. (1989). Absorbed dose estimation according to the results of cytogenetic investigations of lymphocyte cultures of persons who suffered in the accident at the Chernobyl Atomic Power Station. Med Radiol, 34(6), 52–57.
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Romm, H., Ainsbury, E., Barnard, S., Barrios, L., Barquinero, J. F., Beinke, C., Deperas, M., Gregoire, E., Koivistoinen, A., Lindholm, C., Moquet, J., Oestreicher, U., Puig, R., Rothkamm, K., Sommer, S., Thierens, H., Vandersickel, V., Vral, A., y Wojcik, A. (2013). Automatic scoring of dicentric chromosomes as a tool in large scale radiation accidents. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 756(1–2), 174–183. https://doi.org/10.1016/j.mrgentox.2013.05.013
Rungsimaphorn, B., Rerkamnuaychoke, B. y Sudprasert, W. (2016). Establishment of Dose-response Curves for Dicentrics and Premature Chromosome Condensation for Radiological Emergency Preparedness in Thailand. Genome Integrity, 7(8). https://doi.org/10.4103/2041-9414.197165
Sage, E. y Shikazono, N. (2017). Radiation-induced clustered DNA lesions: Repair and mutagenesis. Free Radical Biology and Medicine, 107, 125–135. https://doi.org/10.1016/j.freeradbiomed.2016.12.008
Sørensen, B. S., Bassler, N., Nielsen, S., Horsman, M. R., Grzanka, L., Spejlborg, H., Swakoń, J., Olko, P., y Overgaard, J. (2017). Relative biological effectiveness (RBE) and distal edge effects of proton radiation on early damage in vivo. Acta Oncologica, 56(11), 1387–1391. https://doi.org/10.1080/0284186X.2017.1351621
Sproull, M., Camphausen, K. y Koblentz, G. (2017). Biodosimetry: A Future Tool for Medical Management of Radiological Emergencies. Health Secur, 15(6), 599–610. https://doi.org/10.1089/hs.2017.0050
Suto, Y., Akiyama, M., Noda, T. y Hirai, M. (2015). Construction of a cytogenetic dose-response curve for low-dose range gamma-irradiation in human peripheral blood lymphocytes using three-color FISH. Mutation Research - Genetic Toxicology and Environmental Mutagenesis. https://doi.org/10.1016/j.mrgentox.2015.10.002
Torres-Bugarín, O., Zavala-Cerna, M. G., Nava, A., Flores-García, A. y Ramos-Ibarra, M. L. (2014). Potential uses, limitations, and basic procedures of micronuclei and nuclear abnormalities in buccal cells. In Disease Markers. https://doi.org/10.1155/2014/956835
Wolff, H. A., Hennies, S., Herrmann, M. K. A., Rave-Fränk, M., Eickelmann, D., Virsik, P., Jung, K., Schirmer, M., Ghadimi, M., Hess, C. F., Hermann, R. M., y Christiansen, H. (2011). Comparison of the micronucleus and chromosome aberration techniques for the documentation of cytogenetic damage in radiochemotherapy-treated patients with rectal cancer. Strahlentherapie Und Onkologie, 187(1), 52–58. https://doi.org/10.1007/s00066-010-2163-9