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ABSTRACT: Hereditary gingival fibromatosis (HGF) is a rare genetic disorder characterized by excessive
gum growth, often presenting in childhood or adolescence. Symptoms include difficulties in speech,
eating, oral hygiene, and psychological distress. Understanding the molecular mechanisms behind HGF
is crucial for identifying potential therapeutic targets. This study aimed to predict interactomic hub genes
in HGF using neural networks. We analyzed the GEO dataset GSE4250 using the geor2 tool to identify
differentially expressed genes. Cytoscape and the CytoHubba plugin were employed to construct the
interactome, ranking hub genes based on centrality scores. A neural network model with an 80:20 train-
test split was used to predict hub and non-hub genes, achieving an AUC of 0.853, classification accuracy
of 0.720, F1 score of 0.720, precision of 0.720, and recall of 0.720. The resulting network consisted of
147 nodes and 1092 edges, demonstrating moderate heterogeneity and connectivity. Ten key hub genes
were identified, offering insights into the molecular basis of HGF. While the neural network model shows
promising predictive capacity, further validation in larger cohorts is required. Adding predictive features
and functional validation experiments could deepen understanding of HGF's biological mechanisms.

KEYWORDS: Hereditary gingival fibromatosis; Neural networks; Gene expression profiling; Protein-
protein interactions; Hub genes; Protein interaction maps.
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RESUMEN: La fibromatosis gingival hereditaria (FGH) es un trastorno genético raro caracterizado por un
crecimiento excesivo de las encias, que suele manifestarse en la infancia o adolescencia. Los sintomas
incluyen dificultades en el habla, la alimentacion, la higiene oral y angustia psicoldgica. Comprender los
mecanismos moleculares subyacentes a la FGH es crucial para identificar posibles dianas terapéuticas.
Este estudio tuvo como objetivo predecir genes hub en el interactoma de la FGH utilizando redes
neuronales. Analizamos el conjunto de datos GEO GSE4250 mediante la herramienta geor2 para
identificar genes diferencialmente expresados. Se emplearon Cytoscape y el complemento CytoHubba
para construir el interactoma, clasificando los genes hub segun puntuaciones de centralidad. Se utilizd
un modelo de red neuronal con una division 80:20 entrenamiento-prueba para predecir genes hub y no
hub, logrando un AUC de 0.853, una precision de clasificacion de 0.720, un F1-score de 0.720, una
precision de 0.720 y una exhaustividad de 0.720. La red resultante consto de 147 nodos y 1092 aristas,
mostrando una heterogeneidad y conectividad moderadas. Se identificaron diez genes hub clave, lo
que aporta informacion sobre las bases moleculares de la FGH. Aunque el modelo de red neuronal
muestra una capacidad predictiva prometedora, se requiere validacion en cohortes mas grandes. La
incorporacion de caracteristicas predictivas adicionales y experimentos de validacion funcional podria
profundizar en la comprension de los mecanismos bioldgicos de la FGH.

PALABRAS CLAVE: Fibromatosis gingival hereditaria; Redes neuronales; Perfilacion de expresion génica;

Interacciones proteina-proteina; Genes hub; Redes de interaccion de proteinas.

INTRODUCTION

Hereditary gingival fibromatosis (HGF) is a
rare genetic condition characterized by progres-
sive enlargement of the gingiva, which can inter-
fere with normal chewing and speech (1, 2). It
is inherited as an autosomal dominant trait with
an incidence of 1: 350000.HGF, characterized by
firm, pink, and enlarged gingival tissue. It is usually
seen after permanent tooth eruption and affects
both maxillary and mandibular arches. It can be
generalized or localized and is rarely present at
birth (3).

Gingival hypertrophy, a condition causing
excessive gum growth, can occur during child-
hood or adolescence and cause both upper and
lower gums to become thick, firm, and enlarged.
The exact cause is unknown, but mutations in
certain genes cause abnormal growth. Symptoms
include difficulty speaking, eating, oral hygiene,
bleeding, discomfort, and psychological distress
(4, 5). Diagnosis involves a thorough examination,

medical history, and genetic testing to confirm the
presence of specific gene mutations. Differentia-
ting HGF from drug-induced gingival hyperplasia
(GHID) is crucial, as GHID typically appears after
prolonged medication use and is associated with
inflammation and periodontal problems. While the
prevalence of HGF is undetermined, it can appear
in familial cases, and its underlying causes remain
unclear, though increased fibroblast activity and
altered collagen production have been noted (6).

Identifying interatomic hub genes is crucial
for understanding key players and central regula-
tory nodes in complex biological networks. These
genes influence the behavior of other genes,
providing insights into molecular mechanisms
and pathways in a particular biological process
or disease (7, 8). Understanding these genes can
guide the development of targeted therapeutic
interventions and new strategies (9). For example,
in hereditary gingival enlargement, identifying
these genes can provide clues about dysregula-
ted pathways and cellular processes, guiding the
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development of new therapeutic strategies and drug
targets. They can also be biomarkers for disease
diagnosis, prognosis, and treatment response
prediction (10).

Predicting interactome hub genes also has
implications for clinical management and persona-
lized medicine. They can be biomarkers for disease
diagnosis, prognosis, and treatment response
prediction. Researchers classify patient subgroups
based on hub gene expression profiles to identify
high-risk individuals, tailor treatment strategies,
and monitor treatment response. Network-based
methods predict interactome hub genes, enabling
targeted therapies, drug targets, and personalized
treatment approaches (11).

Neural networks are machine learning
models that can predict interactome hub genes
by analyzing gene expression and protein-protein
interaction data. Neural networks are powerful
computational tools that accurately predict interac-
tome hub genes by capturing complex nonlinear
relationships between genes and their interac-
tions. They can integrate various data types, such
as gene expression and protein-protein interac-
tion data. They can be combined with network-
based approaches to enhance our understanding
of biological network organization and disease
drivers. Therefore, our study aims to predict the
interatomic hub genes using neural networks for
hereditary gingival fibromatosis.

MATERIALS AND METHODS
DIFFERENTIAL GENE EXPRESSION

We followed the following methods to identify
the top differentially expressed genes in the GEO
dataset GSE4250 using the geor2 tool. The GEO
dataset (12) GSE4250 was downloaded from the
NCBI GEO database and used for analysis using
the GEOR2 tool, and statistical tests like t-tests
were chosen for differential expression analysis.

The study used the geor2 tool to analyze diffe-
rentially expressed genes, identifying top genes
based on fold change values or adjusted p-values.
The results were analyzed using gene ontology
enrichment analysis or pathway analysis tools.

CYTOSCAPE AND CYTOHUBBA

The study used Cytoscape (13) to construct
the interactome of differentially expressed genes
in the GEO dataset GSE4250. The list of genes was
imported, along with their fold change values. The
protein-protein interaction data was retrieved from
databases like STRING or BioGRID.interactome
network was visualized in Cytoscape, representing
genes as nodes and protein-protein interactions.
CytoHubba plugin was used to identify hub genes,
using algorithms for network centrality measures.
The algorithm in CytoHubba ranked hub genes
based on centrality scores using maximum clique
centrality, providing insights into influential genes
within differentially expressed gene networks for
further investigation (13).

MACHINE LEARNING OF HUB GENES — NEURAL
NETWORKS OF HUB GENES

Identified hub genes from cytohubba and were
labeled, data were normalized, and missing values
were cleaned and subjected to neural networks with
80 percent training, and 20 percent test and hub
-non-hub genes were labeled and predicted.

NEURAL NETWORK ARCHITECTURE

The neural network architecture, consis-
ting of a hidden layer with 50 neurons, can predict
interactome using hyperparameters, employing the
RelLU activation function. Regularization prevents
overfitting in neural network models using L2
regularization with a parameter of 0.001. The
Adam optimizer, an extension of SGD, adapts
the learning rate during training by combining
AdaGrad and RMSprop algorithms. It is known for its
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efficiency and large dataset handling. The model is
trained using a 90-iteration maximum and adjusts
its weights based on training data and the chosen
optimization algorithm. Validation data is used to
monitor performance and prevent overfitting. The
neural network architecture and hyperparameters
can be adjusted based on the specific interactome
prediction task.

RESULTS

The network, with 147 nodes and 1092
edges, is large and connected, with each node
having 13.701 neighbors, indicating a dense
network with numerous connections. The network
has a diameter of 5 and a radius of 3, with a
characteristic path length of 2.285. It exhibits
clustering, with nodes forming groups and a
network density of 0.094. The network hetero-
geneity is moderate, with moderate variation in
connections. The network centralization is 0.176,
promoting a balanced structure.

The network is a cohesive unit with no
isolated parts, promoting efficient communication
and information flow. The analysis time is 0.544
seconds, indicating the computational efficiency
of the analysis method used. The network's struc-
ture is balanced and distributed, with no single
node having a disproportionately large number
of connections.

Figure 1 presents a volcano plot illustrating
the top differentially expressed genes associated
with hereditary gingival fibromatosis. The x-axis
represents the log2 fold change in gene expres-
sion, while the y-axis shows the -log10 p-value,

highlighting the statistical significance. Genes with
higher fold changes and lower p-values appear
toward the outer edges of the plot. Genes on the
right side of the plot are upregulated, while those
on the left are downregulated. The figure effecti-
vely identifies significantly altered genes in HGF,
providing insights into potential molecular mecha-
nisms underlying the condition.

Figure 2.A displays a network diagram repre-
senting the interactome of the top 250 genes identi-
fied through differential gene expression analysis
in hereditary gingival fibromatosis. Nodes in the
network represent individual genes, while edges
denote protein-protein interactions between them.
The network's structure highlights key relations-
hips and connectivity patterns among these genes,
aiding in the identification of central or hub genes
that may play crucial roles in the disease's molecular
mechanisms. The figure provides a visual summary
of the gene interaction landscape associated with
hereditary gingival fibromatosis, offering insights
into potential therapeutic targets.

Figure 2.B illustrates the interaction network
of the top 50 hub genes associated with hereditary
gingival fibromatosis. Nodes represent hub genes,
while the edges indicate protein-protein interac-
tions between them. The color gradient from
yellow to red signifies the ranking of hub genes
based on centrality, with red nodes represen-
ting the most central and influential genes. The
dense connectivity within this network highlights
the critical roles these hub genes may play in
regulating key pathways related to the disease,
offering potential targets for further investigation
into therapeutic interventions.
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Figure 1. Volcano Plot of Differentially Expressed Genes in Hereditary Gingival Fibromatosis

oo
....vg: Qlo'..!
A . N
. .

. .
.. ..
**escense’

Figure 2. A. Interactome of the Top 250 Genes from Differential Expression Analysis in Hereditary Gingival Fibromatosis. B. Top 50 Hub
Gene Interactions in Hereditary Gingival Fibromatosis.
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Table 1 shows that the neural network
model effectively predicted interactome hub genes
in hereditary gingival enlargement, with an AUC of
0.853, classification accuracy of 0.720, F1 score
of 0.720, precision of 0.720, recall of 0.720, and
specificity of 0.720.

Figure 3.Apresents a SHAP (SHapley Additive
exPlanations) plot illustrating the importance of
key features in the accuracy of the neural network
model predicting hub genes in hereditary gingi-
val fibromatosis. The horizontal bar chart displays
three features-P.Value, F-statistic (F), and adjusted
P.Value (adj.P.Val)-plotted against a scale represen-
ting the decrease in AUC (Area Under the Curve).
The P.Value bar, which extends to 0.32, indicates
the most significant impact on the model's perfor-
mance, while F and adj.P.Val contribute progres-
sively less to model accuracy. This figure provi-
des insights into how each feature influences the
predictive power of the model, with P.Value being
the dominant contributor.

Figure 3.B depicts the confusion matrix
used to evaluate the performance of the neural
network model in classifying hub and non-hub
genes associated with hereditary gingival fibro-
matosis. The matrix shows actual versus predic-
ted classes for 50 instances, with 25 instances
per class (‘hub' and 'non-hub'). True Positives
(TP) indicate the model correctly identified 72.0%
of hub genes, while False Negatives (FN) reflect
that the model misclassified 28.0% of hub genes
as non-hub. False Positives (FP) also account for
28.0%, representing non-hub genes incorrectly
predicted as hub. This matrix highlights the classi-
fication accuracy and the top ten hub genes invol-
ved in hereditary gingival fibromatosis: SPTAT,
MYBPC1, IVNSTABP, PLA2G2A, PTPN1, IFIHT,
SNX13, PCSK1, HCN1, and PAPPA2.

Table 2 shows the Kegg biological pathway
of these hub genes. This table provides a compre-

hensive overview of biological pathways, their statis-
tical measures, and their association with specific
conditions or groups. It includes an index, a name,
an adjusted p-value, an odds ratio, and a combi-
ned score. The index ranks the pathway, the name
describes its description, and the p-value measu-
res statistical significance. The odds ratio indica-
tes the likelihood of enrichment between groups.

Table 3 summarizes the molecular functions
associated with hub genes identified in heredi-
tary gingival fibromatosis. Each entry details
a specific Gene Ontology (GO) term related to
the function of these genes, ranked by statisti-
cal significance. The table presents the p-value,
adjusted p-value, odds ratio, and combined score
for each molecular function. Notably, Zinc lon
Binding (G0:0008270) shows the lowest p-value
(0.0005394) and the highest odds ratio (24.92),
indicating a strong association with the hub genes.
Other significant functions include Transition Metal
lon Binding (G0O:0046914) and Intracellular cAMP-
activated Cation Channel Activity (G0:0005222),
with odds ratios of 18.48 and 317.19, respecti-
vely, highlighting their critical roles in biological
processes. Functions such as Calcium-Dependent
Phospholipase A2 Activity and Ephrin Receptor
Binding further illustrate the diverse roles these
hub genes play. This table underscores the impor-
tance of these molecular functions in elucidating
the mechanisms underlying hereditary gingival
fibromatosis, potentially guiding future therapeu-
tic strategies.

Figure 4.A presents the Receiver Operating
Characteristic (ROC) curve for the classification
of non-hub genes in hereditary gingival fiboroma-
tosis. The curve illustrates the trade-off between
sensitivity (true positive rate) and specificity (false
positive rate) of the neural network model. A higher
Area Under the Curve (AUC) value indicates a better
model performance in distinguishing non-hub
genes from hub genes, providing a measure of the
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model's predictive accuracy. This curve is a key
metric for evaluating how effectively the model
identifies non-hub genes in comparison to hub genes.

Figure 4.B illustrates the Receiver Operating
Characteristic (ROC) curve for the classification of
hub genes in hereditary gingival fibromatosis. This
curve demonstrates the model's performance in
differentiating hub genes from non-hub genes by

Table 1. Neural network.

plotting the true positive rate (sensitivity) against
the false positive rate (1-specificity). A higher Area
Under the Curve (AUC) value indicates superior
classification accuracy, signifying that the model
is effective in correctly identifying hub genes. This
ROC curve serves as a vital tool for assessing the
predictive capability of the neural network model
specifically for hub gene classification within the
context of hereditary gingival fibromatosis.

Model AUC CA

Precision Recall Specificity

Neural Network 0.853 0.720

0.720

0.720 0.720 0.720

r
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Figure 3. A. SHAP Plot of Feature Importance in Predicting Hub Genes in Hereditary Gingival Fibromatosis. B. Confusion Matrix for Predic-

ting Hub Genes in Hereditary Gingival Fibromatosis.

Table 2. Kegg biological pathway of hub genes.

Index Name p-value Adjusted 0dds Ratio Combined
p-value score
1 Alpha-Linolenic acid metabolism 0.01243 0.08736 92.44 405.55
2 Linoleic acid metabolism 0.01441 0.08736 79.21 335.86
3 Fat digestion and absorption 0.0213 0.08736 52.77 203.13
4 Ether lipid metabolism 0.02424 0.08736 46.16 171.72
5 Arachidonic acid metabolism 0.03009 0.08736 36.91 129.31
6 GnRH secretion 0.03155 0.08736 35.14 121.47
7 RIG-I-like receptor signaling pathway 0.03446 0.08736 32.08 108.04
8 Adherens junction 0.03495 0.08736 31.62 106.05
9 Glycerophospholipid metabolism 0.04794 0.09172 22.79 69.22
10 Pancreatic secretion 0.04986 0.09172 21.88 65.61
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Table 3. Molecular function of hub genes.

Index Name p-value Adjusted Odds Ratio Combined
p-value score
1 Zinc lon Binding (G0:0008270) 0.0005394 0.02265 24.92 187.51
2 Transition Metal lon Binding (G0:0046914) 0.001254 0.02633 18.48 123.5
3 Intracellular cAMP-activated Cation Channel Activity (G0:0005222)  0.003994 0.03591 317.19 1751.86
4 Non-Membrane Spanning Protein Tyrosine Phosphatase Activity — 0.004492 0.03591 277.53 1500.17
(G0:0004726)
5 Intracellular Cyclic Nucleotide Activated Monoatomic Cation ~ 0.00499 0.03591 246.68 1307.49
Channel Activity (G0:0005221)
6 cAMP Binding (G0:0030552) 0.005488 0.03591 222 1155.57
7 Titin Binding (G0:0031432) 0.005985 0.03591 201.81 1032.95
8 Calcium-Dependent Phospholipase A2 Activity (GO:0047498) 0.007973 0.03991 147.96 714.91
9 Adenyl Ribonucleotide Binding (G0:0032559) 0.009865 0.03991 16.03 74.03
10 Ephrin Receptor Binding (G0:0046875) 0.01045 0.03991 110.94 506.01
A ]

Figure 4. A. ROC Curve for Non-Hub Gene Classification in Hereditary Gingival Fibromatosis. B. ROC Curve for Hub Gene Classification in
Hereditary Gingival Fibromatosis.
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DISCUSSION

Hereditary gingival fibromatosis is a rare,
autosomal dominant form of gingival overgrowth
caused by a mutation in the SOS1 gene, resul-
ting in a protein chimera with a wild-type SOST1
protein(14, 15). Hereditary gingival fibromatosis
is a rare, benign disorder characterized by fibrous
overgrowth of gingiva. Two loci have been mapped,
and a novel locus, GINGF3, has been identified.
The autosomal dominant inheritance pattern invol-
ves increased fibroblast proliferation, collagen and
fibronectin synthesis, and reduced matrix metallo-
proteinases, with variable penetrance and expres-
sivity. HGF typically appears with permanent teeth
eruption, associated with increased transforming
growth factor B1 levels (2, 5, 16, 17). The gingiva
has a rosy, fibrous appearance, partial or total tooth
coverage, and variable severity without affecting
the bone. Two autosomal dominant non-syndromic
HGF loci have been mapped in familial cases, with
only the SOS1 gene underlying the GINGF locus
identified and a novel locus, GINGF3, mapped to
2p22.3-p23.3 (18, 19).

Gingival fibromatosis, a genetic disorder,
can be familial or idiopathic and linked to inheri-
ted syndromes like Zimmerman Laband syndrome,
Murray Puretic Drescher, Rutherfurd, Cross,
Cowden syndrome, and tuberous sclerosis. It can
cause hypertrichosis, growth retardation, epilepsy,
splenomegaly, optic and auditory defects, and
dentigerous cysts (1, 2, 4, 16). A heterozygous
frameshift mutation in the SOS1 gene causes
hereditary gingival fibromatosis (HGF). The autoso-
mal dominant inheritance pattern varies, with 20%
of cases lacking a family history. Diagnosis relies
on medical history, clinical examination, blood
tests, and histopathological evaluation, making
genetic testing impractical. |dentifying key genes
and understanding HGF molecular mechanisms is
crucial for further research (5, 6, 20).

In this study, we identified the top ten hub
genes involved in hereditary gingival enlargement,
including SPTA1, MYBPC1, IVNS1ABP, PLA2G2A,
PTPN1, IFIH1, SNX13, PCSK1, HCN1, and PAPPA2
(Figure 1 and Figure 2). In this study, the neural
network model effectively predicted interactome
hub genes in hereditary gingival enlargement, with
an AUC of 0.853, classification accuracy of 0.720,
F1 score of 0.720, precision of 0.720, and recall
of 0.720 (Figure 3 and Figure 4) (Table 1) similar to
previous study identified 249 differentially expres-
sed genes (DEGs) in HGF patients' gums compa-
red to healthy controls. A protein-protein interac-
tion network was constructed, identifying 12 core
genes, with POTE ankyrin domain family member
| as the highest degree node, enabling bioinfor-
matics methods to predict HGF-related genes like
MYBPC1, PLA2G2A, PCSK1 (21, 22).

The KEGG enrichment analysis reveals
that the hub gene set is significantly associated
with several metabolic and signaling pathways,
primarily related to lipid metabolism and its roles
in health and disease. These pathways include
alpha-linolenic Acid Metabolism, which is invol-
ved in the metabolism of essential omega-3 fatty
acids, linoleic Acid Metabolism, Fat Digestion and
Absorption, Ether Lipid Metabolism, Arachido-
nic Acid Metabolism, GnRH Secretion, RIG-I-like
Receptor Signaling Pathway, Adherens Junction,
Glycerophospholipid Metabolism, and Pancrea-
tic Secretion (14, 23-25). These pathways are
crucial for maintaining membrane integrity and
functionality and influencing metabolic processes
or disorders such as metabolic syndrome, cardio-
vascular diseases, and reproductive health. The
analysis suggests that the gene set may play a
role in various physiological processes or disor-
ders that involve these pathways, such as metabo-
lic syndrome and fibrosis (Table 2 and Table 3).
Genes reveal that interest is significantly enriched
for processes related to ion binding, particularly
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zinc ions and transition metals. This suggests that
the selected genes may play critical roles in signa-
ling pathways or structural functions involving
ion transport and binding. This could be pivotal
in further investigating their roles in biological
systems or diseases. The analysis also highlights
the functional diversity of the list, with terms like
Adenyl Ribonucleotide Binding and Ephrin Recep-
tor Binding showing lower significance (26-28).

The study focuses on a specific dataset of
hereditary gingival enlargement, highlighting the
need for validation in larger cohorts to ensure
the model's robustness and generalizability. It
also suggests exploring other predictive features,
such as clinical variables, genetic markers, or
other omics data, to improve predictive accuracy.
Functional validation experiments are also crucial
to confirm the role of predicted hub genes in
hereditary gingival enlargement (25, 26). The
ultimate goal is to translate the model's findings
into clinical utility, aiding diagnosis, prognosis,
and treatment decision-making. However, limita-
tions include limited sample size, data quality and
biases, interpretability of the model, and exter-
nal validation using independent datasets. These
factors will help ensure the model's applicability
and reliability in different settings, contributing
to its robustness. Future directions should also
assess the model's practicality and usefulness in
real-world clinical settings.

CONCLUSIONS

The study identifies ten hub genes and
develops a neural network model for predicting
these genes in hereditary gingival enlargement.
However, validation in larger cohorts is needed for
reliability and generalizability. Additional predictive
features and functional validation experiments will
enhance understanding of biological mechanisms.
Translation into clinical practice could improve
diagnosis, prognosis, and treatment decision-
making. Such as sample size, data quality, inter-

pretability of the model, and external validation
using independent datasets. The model's practica-
lity in real-world clinical settings can be assessed
to maximize its potential in assisting patients with
hereditary gingival enlargement.
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